Page 122 - 《爆炸与冲击》2023年第2期
P. 122

第 43 卷    第 2 期                   爆    炸    与    冲    击                       Vol. 43, No. 2
                2023 年 2 月                    EXPLOSION AND SHOCK WAVES                          Feb., 2023

               DOI:10.11883/bzycj-2022-0160


                                 液压膨胀环恒应变率加载技术                                         *


                                              李嘉皓 ,徐    便 ,郑宇轩 ,周风华        1
                                                                   1,2
                                                    1
                                                           1
                                  (1. 宁波大学冲击与安全工程教育部重点实验室,浙江 宁波 315211;
                        2. 中国工程物理研究院流体物理研究所冲击波物理与爆轰物理重点实验室,四川 绵阳 621999)

                  摘要: 膨胀环实验技术主要包括爆炸膨胀环实验技术和电磁膨胀环实验技术,实验过程中膨胀环的加载应变率
               在达到峰值后会随着圆环的膨胀而迅速降低,给研究应变率敏感材料的拉伸碎裂带来极大的不便。在前期提出的液
               压膨胀环实验技术的基础上,发展了一种恒应变率加载技术。首先,从理论上获得了实现金属圆环恒应变率膨胀所需
               的液压加载曲线的近似表达式;然后,采用有限元流固耦合数值模拟了液压膨胀环装置中                                1060-O  铝环的膨胀碎裂过
               程,在给定液压加载曲线下,膨胀环的环向应变率在应变率稳定阶段上下波动范围最大不超过                                 20%;并进一步研究了
               加载曲线对碎裂过程中应变率的影响规律。在液压膨胀环实验装置上对                          1060-O 铝环开展了膨胀环实验,验证了恒应
               变率加载技术的可行性。
                  关键词: 液压膨胀环;恒应变率;径向速度;拉伸碎裂
                  中图分类号: O347.1   国标学科代码: 13015   文献标志码: A


                        Constant strain-rate loading of liquid-driving expanding ring

                                            1
                                                                    1,2
                                                     1
                                     LI Jiahao , XU Bian , ZHENG Yuxuan , ZHOU Fenghua 1
                   (1. MOE Key Laboratory of Impact and Safety Engineering, Ningbo University, Ningbo 315211, Zhejiang, China;
                          2. National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics,
                                 China Academy of Engineering Physics, Mianyang 621999, Sichuan, China)

               Abstract:  The expanding ring experimental technology mainly refers to the explosion expanding ring and the electromagnetic
               expanding ring experimental technology. During the experiment, the loading strain rate of the expansion ring decreases rapidly
               with  the  expansion  of  the  ring  after  reached  the  peak  value,  which  creates  great  inconvenience  to  the  study  of  tension
               fragmentation of strain-rate sensitive solids. In this paper, a constant strain-rate loading technology is developed on the basis of
               the liquid-driving expanding ring experimental technology. Since it is not possible to apply sudden loading to the expansion
               ring during the experiment, it is assumed that the strain rate of the expansion ring during the expansion process is divided into
               linear growth stage and stable stage of the strain rate. By reasonably controlling the loading velocity and loading time of the
               liquid, an approximate expression of the liquid-driving loading curve required to realize the constant strain-rate expansion of
               the metal ring is deduced theoretically. The tension fragmentation process of the 1060-O aluminum ring under liquid-driving
               loading is simulated by the fluid-solid coupling numerical simulation. Under the liquid-driving loading curve, the hoop strain
               rate of the expanding ring fluctuates within a maximum of 20% in the stable stage of the strain rate. Before occurring of the
               significant necking of the expansion ring, the circumferential velocity of the expansion ring is basically zero, indicating that the
               expansion ring is under uniform tensile loading and there is no stress wave propagation in the circumferential direction. When
               the expansion ring is significantly necked, an obvious sudden change in the circumferential velocity will take place, indicateing




                 *  收稿日期: 2022-04-15;修回日期: 2022-09-19
                   基金项目: 国家自然科学基金(12272193,11932018);冲击波物理与爆轰物理重点实验室基金(6142A03191004)
                   第一作者: 李嘉皓(1996- ),男,硕士研究生,948602380@qq.com
                   通信作者: 郑宇轩(1986- ),男,博士,副教授,zhengyuxuan@nbu.edu.cn


                                                         024101-1
   117   118   119   120   121   122   123   124   125   126   127