Page 120 - 《爆炸与冲击》2023年第2期
P. 120

第 43 卷          郝礼楷,等: JPC聚能装药对钢筋混凝土墙毁伤效应的试验与数值模拟研究                              第 2 期


               6 cm(0.50  倍装药直径)的侵彻孔洞。
                   (2) 将侵彻钢筋混凝土墙作用过程划分为稳定成型、冲击开坑、稳定侵彻以及贯穿崩落这                                         4  个阶
               段。在特定工况条件下,钢筋混凝土墙的破坏是                      JPC  高速侵彻与爆炸冲击波联合作用下导致的,聚能装
               药的多载荷毁伤特性决定了钢筋混凝土墙的破坏结果。
                   (3) 墙体厚度在     60 cm(5.0  倍装药直径)至    100 cm(8.3  倍装药直径)范围内变化时,JPC           均能实现有效
               贯穿。墙体厚度对正面漏斗坑直径和深度以及内部孔洞直径影响不大,随着墙体厚度增加,背面漏斗坑
               直径逐渐减小,背面漏斗坑深度和内部孔洞占比逐渐增大。

               参考文献:

               [1]  张雷雷, 黄风雷, 段卓平. 爆炸成型杆式侵彻体对混凝土靶侵彻研究 [J]. 弹箭与制导学报, 2006(SA): 1140–1142. DOI:
                    10.3969/j.issn.1673-9728.2006.02.361.
                    ZHANG L L, HUANG F L, DUAN Z P. Studies about jetting projectiles charge’s penetration to concrete target [J]. Journal of
                    Projectiles, Rockets, Missiles and Guidance, 2006(SA): 1140–1142. DOI: 10.3969/j.issn.1673-9728.2006.02.361.
               [2]  李成兵, 沈兆武, 裴明敬. 聚能杆式弹丸侵彻混凝土实验研究 [J]. 振动与冲击, 2007(7): 85–88,183. DOI: 10.3969/j.issn.
                    1000-3835.2007.07.020.
                    LI  C  B,  SHEN  Z  W,  PEI  M  J.  Experimental  investigation  of  rod-shaped  projectile  penetrating  concrete  [J].  Journal  of
                    Vibration and Shock, 2007(7): 85–88,183. DOI: 10.3969/j.issn.1000-3835.2007.07.020.
               [3]  顾文彬, 胡亚峰, 刘建青, 等. 基于等质量变壁厚球缺罩聚能杆式射流成型特性研究 [J]. 爆破器材, 2013, 42(4): 14–19.
                    DOI: 10.3969/j.issn.1001-8352.2013.04.004.
                    GU W B, HU Y F, LIU J Q, et al. Characteristic study on jetting projectile charge formation of variable thickness sphere liner
                    based on equi-mass [J]. Explosive Materials, 2013, 42(4): 14–19. DOI: 10.3969/j.issn.1001-8352.2013.04.004.
               [4]  付恒, 陈智刚. 等壁厚球缺形装药结构优化设计 [J]. 爆破器材, 2016, 45(5): 17–22. DOI: 10.3969/j.issn.1001-8352.
                    2016.05.004.
                    FU H, CHEN Z G. Optimization design of hemispherical charge structure with equal thickness [J]. Explosive Materials, 2016,
                    45(5): 17–22. DOI: 10.3969/j.issn.1001-8352.2016.05.004.
               [5]  张钧, 陈智刚, 李小军, 等. 变壁厚球缺罩杆式射流的形成与侵彻性能研究 [J]. 爆破器材, 2016, 45(1): 39–42. DOI:
                    10.3969/j.issn.1001-8352.2016.01.009.
                    ZHANG J, CHEN Z G, LI X J, et al. Formation and penetration performances of jetting penetrator charge of hemispherical
                    liners with variable thickness [J]. Explosive Materials, 2016, 45(1): 39–42. DOI: 10.3969/j.issn.1001-8352.2016.01.009.
               [6]  王维占, 冯顺山, 李小军, 等. 局部变壁厚球缺型药型罩侵彻威力性能的数值模拟及试验验证 [J]. 火炸药学报, 2018,
                    41(4): 420–424. DOI: 10.14077/j.issn.1007-7812.2018.04.018.
                    WANG  W  Z,  FENG  S  S,  LI  X  J,  et  al.  Numerical  simulation  and  experimental  verification  of  the  penetrating  power
                    performance of hemispherical liner with locally variable-walled thickness [J]. Chinese Journal of Explosives & Propellants,
                    2018, 41(4): 420–424. DOI: 10.14077/j.issn.1007-7812.2018.04.018.
               [7]  张毅, 王志军, 崔斌, 等. 不同结构钛合金罩战斗部侵彻混凝土数值模拟 [J]. 兵器材料科学与工程, 2015, 38(2): 95–98.
                    DOI: 10.14024/j.cnki.1004-244x.2015.02.008.
                    ZHANG Y, WANG Z J, CUI B, et al. Numerical simulation on concrete target penetrated by warhead of different titanium
                    alloy  shaped  charge  [J].  Ordnance  Material  Science  and  Engineering,  2015,  38(2): 95–98.  DOI:  10.14024/j.cnki.1004-
                    244x.2015.02.008.
               [8]  LI J, HAO H. Numerical study of concrete spall damage to blast loads [J]. International Journal of Impact Engineering, 2014,
                    68: 41–55. DOI: 10.1016/j.ijimpeng.2014.02.001.
               [9]  WU J, ZHOU Y M, ZHANG R, et al. Numerical simulation of reinforced concrete slab subjected to blast loading and the
                    structural damage assessment [J]. Engineering Failure Analysis, 2020, 118: 104926. DOI: 10.1016/j.engfailanal.2020.104926.
               [10]  HU  F,  WU  H,  FANG  Q,  et  al.  Numerical  simulations  of  shaped  charge  jet  penetration  into  concrete-like  targets  [J].
                    International Journal of Protective Structures, 2017, 8(2): 237–259. DOI: 10.1177/2041419617706863.
               [11]  LI W B, WANG X M, LI W B. The effect of annular multi-point initiation on the formation and penetration of an explosively
                    formed  penetrator  [J].  International  Journal  of  Impact  Engineering,  2010,  37(4): 414–424.  DOI:  10.1016/j.ijimpeng.2009.
                    08.008.


                                                         023302-14
   115   116   117   118   119   120   121   122   123   124   125