Page 82 - 《真空与低温》2025年第3期
P. 82
苟明楷等:加热电流对六硼化镧阴极场发射特性影响研究 353
;
1/2
10 −11 F/ϕ t(y) t(y) = 1+0.110 7y 1.33 [8] ; E为电子能量; tion for high-brightness and stable field-emission[J]. Nano
E F为费米能级; k为玻尔兹曼常数; 为温度。代入 Research,2020,13:1620−1626.
T
T=1 000 K 及电场强度 2~2.57 V/nm,计算理论能散 [7] KASUYA K,KUSUNOKI T,HASHIZUME T,et al. Mono-
chromatic electron emission from CeB 6 (310) cold field emi-
值为 0.53~0.57 eV,虽然比六硼化镧在室温下的能
tter[J]. Applied Physics Letters,2020,117(21):213103.
散 0.2 eV 有所提升,但仍远小于六硼化镧热发射的
[8] TANG S,TANG J,WU Y,et al. Stable field-emission from a
[1]
能散 1 eV,且与钨冷阴极在室温下能散 0.4 eV 相当 。 CeB 6 nanoneedle point electron source[J]. Nanoscale,2021,13:
4 结论 17156−17161.
[9] TANG S, TANG J, OKUNISHI E, et al. A stable LaB 6
本研究采用聚焦等离子体刻蚀(FIB)方法在肖 nanoneedle field-emission electron source for atomic resolu-
特基电子源底座上制备了六硼化镧纳米锥电子源, tion imaging with a transmission electron microscope[J]. Ma-
并在不同加热电流下对其发射特性进行了研究。通 terials Today,2022,57:35−42.
过热仿真获得了不同加热电流下阴极的温度变化 [10] TANG S, TANG J, UZUHASHI J, et al. A stable LaB 6
规律,发现随着加热电流增大,温度升高,电流趋近 nanoneedle field-emission point electron source[J]. Nanos-
稳定。并且在加热温度高于 800 K 时,电流稳定性 cale Advances,2021,3(10):2787−2792.
明显变好,100 s 内波动性在 5% 以内,最好可达 1%。 [11] HUST J G,LANKFORD A B. Standard reference materials:
Update of thermal conductivity and electrical resistivity of
在 1 000 K 时的场发射 F-N 曲线呈现线性说明此时
electrolytic iron,tungsten,and stainless steel[R]. NBS SP 260-
电子发射机制为场发射。以功函数为 2.5 eV,温度
90,Gaitherburg,1984.
为 800 ~1 000 K,局域电场强度为 2~2.7 V/nm 时,计
[12] FUKUDA M,HASEGAWA A,NOGAMI S. Thermal pro-
算得到其发射机制为场发射。对应电流密度高于
perties of pure tungsten and its alloys for fusion applica-
10
2
10 A/m ,能散为 0.45~0.55 eV。本研究提供了一种 tions[J]. Fusion Engineering and Design,2018,132:1−6.
实现高性能六硼化镧场发射电子源稳定发射的方 [13] FOWLER R H, NORDHEIM L. Electron emission in in-
法,对六硼化镧场发射电子源实际应用有指导意义。 tense electric fields[J]. Proceedings of the Royal Society of
London Series A,1928,119:173−181.
参考文献:
[14] MURPHY E L, GOOD R H. Thermionic emission, field
emission, and the transition region[J]. Physical Review,
[1] UL-HAMID A. A beginners' guide to scanning electron mic-
1956,102(6):1464−1473.
roscopy [M]. Springer,2018.
[15] FORBES R G. Comments on the continuing widespread and
[2] BINH V T,GARCIA N,PURCELL S T. Electron field emission
unnecessary use of a defective emission equation in field
from atom-sources:Fabrication,properties,and applications
emission related literature[J]. Journal of Applied Physics,
of nanotips[M]//HAWKES P W. Advances in Imaging and
2019,126(21):210901.
Electron Physics Elsevier,1996:63-153.
[16] TODOKORO H,SAITOU N,YAMAMOTO S. Role of ion
[3] CHARBONNIER F. Developing and using the field emitter
bombardment in field emission current instability[J]. Japa-
as a high intensity electron source[J]. Applied Surface Science,
nese Journal of Applied Physics,1982,21(10R):1513.
1996,94/95:26−43.
[17] SMITH T. Effect of surface coverage and temperature on
[4] SWANSON L,SCHWIND G. A review of the cold-field elec-
the sticking coefficient[J]. The Journal of Chemical Physics,
tron cathode[J]. Advances in Imaging and Electron Physics,
1964,40(7):1805−1812.
2009,159:63−100.
[18] HOLLENBACH D,SALPETER E E. Surface adsorption of
[5] IRITA M,YAMAZAKI S,NAKAHARA H,et al. Develop-
light gas atoms[J]. The Journal of Chemical Physics,1970,
ment of a compact Fe-SEM and X-Ray microscope with a
53(1):79−86.
carbon nanotube electron source[C]//IOP Conference Series:
[19] YOUNG R D. Theoretical total-energy distribution of field-emit-
Materials Science and Engineering,2018.
ted electrons[J]. Physical Review, 1959, 113(1): 110−114.
[6] TANG S,TANG J,CHIU T W,et al. A HfC nanowire point
electron source with oxycarbide surface of lower work func- (责任编辑:郭 云)
引文信息:苟明楷,黄凯,陈程成,等. 加热电流对六硼化镧阴极场发射特性影响研究[J]. 真空与低温,2025,31(3):349−353.
GOU M K,HUANG K,CHEN C C,et al. Study on the effect of heating current on the emission characteristics of LaB 6
cold cathode[J]. Vacuum and Cryogenics,2025,31(3):349−353.