Page 82 - 《真空与低温》2025年第3期
P. 82

苟明楷等:加热电流对六硼化镧阴极场发射特性影响研究                                        353


                           ;
                      1/2
              10 −11 F/ϕ t(y) t(y) = 1+0.110 7y 1.33 [8] ; E为电子能量;  tion  for  high-brightness  and  stable  field-emission[J].  Nano
              E F为费米能级;     k为玻尔兹曼常数; 为温度。代入                       Research,2020,13:1620−1626.
                                              T
              T=1 000 K  及电场强度     2~2.57 V/nm,计算理论能散           [7]   KASUYA K,KUSUNOKI T,HASHIZUME T,et al. Mono-
                                                                   chromatic electron emission from CeB 6  (310) cold field emi-
              值为   0.53~0.57 eV,虽然比六硼化镧在室温下的能
                                                                   tter[J]. Applied Physics Letters,2020,117(21):213103.
              散  0.2 eV  有所提升,但仍远小于六硼化镧热发射的
                                                                [8]   TANG S,TANG J,WU Y,et al. Stable field-emission from a
                                                          [1]
              能散   1 eV,且与钨冷阴极在室温下能散            0.4 eV  相当 。       CeB 6  nanoneedle point electron source[J]. Nanoscale,2021,13:

              4 结论                                                 17156−17161.
                                                                [9]   TANG  S, TANG  J, OKUNISHI  E, et  al.  A  stable  LaB 6
                  本研究采用聚焦等离子体刻蚀(FIB)方法在肖                           nanoneedle field-emission electron source for atomic resolu-
              特基电子源底座上制备了六硼化镧纳米锥电子源,                               tion imaging with a transmission electron microscope[J]. Ma-
              并在不同加热电流下对其发射特性进行了研究。通                               terials Today,2022,57:35−42.
              过热仿真获得了不同加热电流下阴极的温度变化                             [10]   TANG  S, TANG  J, UZUHASHI  J, et  al.  A  stable  LaB 6
              规律,发现随着加热电流增大,温度升高,电流趋近                               nanoneedle field-emission point electron source[J]. Nanos-
              稳定。并且在加热温度高于              800 K  时,电流稳定性              cale Advances,2021,3(10):2787−2792.
              明显变好,100 s 内波动性在         5%  以内,最好可达       1%。    [11]   HUST J G,LANKFORD A B. Standard reference materials:
                                                                    Update of thermal conductivity and electrical resistivity of
              在  1 000 K  时的场发射    F-N  曲线呈现线性说明此时
                                                                    electrolytic iron,tungsten,and stainless steel[R]. NBS SP 260-
              电子发射机制为场发射。以功函数为                   2.5 eV,温度
                                                                    90,Gaitherburg,1984.
              为  800 ~1 000 K,局域电场强度为       2~2.7 V/nm  时,计
                                                                [12]   FUKUDA M,HASEGAWA A,NOGAMI S. Thermal pro-
              算得到其发射机制为场发射。对应电流密度高于
                                                                    perties  of  pure  tungsten  and  its  alloys  for  fusion  applica-
                10
                     2
              10  A/m ,能散为    0.45~0.55 eV。本研究提供了一种                 tions[J]. Fusion Engineering and Design,2018,132:1−6.
              实现高性能六硼化镧场发射电子源稳定发射的方                             [13]   FOWLER  R  H, NORDHEIM  L.  Electron  emission  in  in-
              法,对六硼化镧场发射电子源实际应用有指导意义。                               tense electric fields[J]. Proceedings of the Royal Society of
                                                                    London Series A,1928,119:173−181.
              参考文献:
                                                                [14]   MURPHY  E  L, GOOD  R  H.  Thermionic  emission, field

                                                                    emission, and  the  transition  region[J].  Physical  Review,
              [1]   UL-HAMID A. A beginners' guide to scanning electron mic-
                                                                    1956,102(6):1464−1473.
                 roscopy [M]. Springer,2018.
                                                                [15]   FORBES R G. Comments on the continuing widespread and
              [2]   BINH V T,GARCIA N,PURCELL S T. Electron field emission
                                                                    unnecessary  use  of  a  defective  emission  equation  in  field
                 from atom-sources:Fabrication,properties,and applications
                                                                    emission  related  literature[J].  Journal  of  Applied  Physics,
                 of  nanotips[M]//HAWKES  P  W.  Advances  in  Imaging  and
                                                                    2019,126(21):210901.
                 Electron Physics Elsevier,1996:63-153.
                                                                [16]   TODOKORO H,SAITOU N,YAMAMOTO S. Role of ion
              [3]   CHARBONNIER F. Developing and using the field emitter
                                                                    bombardment in field emission current instability[J]. Japa-
                 as a high intensity electron source[J]. Applied Surface Science,
                                                                    nese Journal of Applied Physics,1982,21(10R):1513.
                 1996,94/95:26−43.
                                                                [17]   SMITH  T.  Effect  of  surface  coverage  and  temperature  on
              [4]   SWANSON L,SCHWIND G. A review of the cold-field elec-
                                                                    the sticking coefficient[J]. The Journal of Chemical Physics,
                 tron cathode[J]. Advances in Imaging and Electron Physics,
                                                                    1964,40(7):1805−1812.
                 2009,159:63−100.
                                                                [18]   HOLLENBACH D,SALPETER E E. Surface adsorption of
              [5]   IRITA M,YAMAZAKI S,NAKAHARA H,et al. Develop-
                                                                    light gas atoms[J]. The Journal of Chemical Physics,1970,
                 ment  of  a  compact  Fe-SEM  and  X-Ray  microscope  with  a
                                                                    53(1):79−86.
                 carbon nanotube electron source[C]//IOP Conference Series:
                                                                [19]   YOUNG R D. Theoretical total-energy distribution of field-emit-
                 Materials Science and Engineering,2018.
                                                                    ted electrons[J].  Physical  Review, 1959, 113(1): 110−114.
              [6]   TANG S,TANG J,CHIU T W,et al. A HfC nanowire point
                 electron source with oxycarbide surface of lower work func-           (责任编辑:郭 云)


              引文信息:苟明楷,黄凯,陈程成,等. 加热电流对六硼化镧阴极场发射特性影响研究[J]. 真空与低温,2025,31(3):349−353.
                      GOU M K,HUANG K,CHEN C C,et al. Study on the effect of heating current on the emission characteristics of LaB 6
                      cold cathode[J]. Vacuum and Cryogenics,2025,31(3):349−353.
   77   78   79   80   81   82   83   84   85   86   87