Page 43 - 《真空与低温》2025年第3期
P. 43
314 真空与低温 第 31 卷 第 3 期
cathode[J]. Journal of Physics: Conference Series, 2019, ducting molecules[J]. Science,2006,311(5759):356−359.
1400(5):055011. [65] FANGET A,TRAVERSI F,KHLYBOV S,et al. Nanopore
[55] SILVA S R P, FORREST R D, SHANNON J M, et al. integrated nanogaps for DNA detection[J]. Nano Letters,
Electron field emission from amorphous silicon[J]. Journal 2014,14(1):244−249.
of Vacuum Science & Technology B:Microelectronics and [66] OH Y,LEE W,KIM Y,et al. Self-aligned colocalization of
Nanometer Structures Processing, Measurement, and Phe- 3D plasmonic nanogap arrays for ultra-sensitive surface
nomena,1999,17(2):596-600. plasmon resonance detection[J]. Biosensors & Bioelectron-
[56] HAN J W,SEOL M L,MOON D I,et al. Nanoscale vacuum ics,2014,51:401−407.
channel transistors fabricated on silicon carbide wafers[J]. [67] LI X,CHEN F,WANG J,et al. Nano-air-channel Si pho-
Nature Electronics,2019,2(9):405−411. todetectors with enhanced responsivity and photocurrent[J].
[57] LIU M,LI T,WANG Y. SiC emitters for nanoscale vacuum [J]. IEEE Electron Device Letters,2025,46(2):223−226.
electronics:A systematic study of cathode–anode gap by fo- [68] DEAN K A,CHALAMALA B R. The environmental stabili-
cused ion beam etching[J]. Journal of Vacuum Science & ty of field emission from single-walled carbon nanotubes[J].
Technology B:Nanotechnology and Microelectronics,Ma- Applied Physics Letters,1999,75(19):3017−3019.
terials, Processing, Measurement, and Phenomena, 2017, [69] FANG X,YAN J,HU L,et al. Thin SnO 2 nanowires with
35(3):031801.
uniform diameter as excellent field emitters:A stability of
[58] BOCHAROV G S,ELETSKII A V. Theory of Carbon Nan-
more than 2 400 minutes[J]. Advanced Functional Materials,
otube (CNT)-based electron field emitters[J]. Nanomateri-
2012,22(8):1613−1622.
als,2013,3(3):393−442.
[70] CHEN S,YING P,WANG L,et al. Highly flexible and ro-
[59] HAO T, LI W, LIU Z, et al. Low turn-on field nanodia-
bust N-doped SiC nanoneedle field emitters[J]. NPG Asia
mond conic field emitter[J]. Diamond and Related Materials,
Materials,2015,7(1):e157.
2017,75:91−95.
[71] WANG L,WEI G,GAO F,et al. High-temperature stable
[60] ZHANG P. Scaling for quantum tunneling current in nano-
field emission of B-doped SiC nanoneedle arrays[J]. Nanos-
and subnano-scale plasmonic junctions[J]. Scientific Reports,
cale,2015,7(17):7585−7592.
2015,5(1):9826.
[72] 张天平,耿海,张雪儿,等. 离子电推进技术的发展现状与
[61] BONARD J M,DEAN K A,COLL B F,et al. Field emission
未来 [J]. 上海航天,2019,36(6):88−96.
of individual carbon nanotubes in the scanning electron mic-
[73] GILCHRIST B, BILÉN S, HOYT R, et al. The PROPEL
roscope[J]. Physical Review Letters,2002,89(19):197602.
electrodynamic tether mission and connecting to the iono-
[62] XU J, WANG Q, TAO Z, et al. Enhanced electron emis-
sphere[C/OL]. 12th Spacecrft Charging Technology Con-
sion of directly transferred few-layer graphene decorated
ference, 2012: 1-33[2025-05-08]. https://ntrs.nasa.gov/api/
with gold nanoparticles[J]. RSC Advances, 2016, 6(81):
citations/20120015031/downloads/20120015031.pdf.
78170−78175.
[74] HOLSTE K, DIETZ P, SCHARMANN S, et al. Ion
[63] AMLANI I,RAWLETT A M,NAGAHARA L A,et al. An
thrusters for electric propulsion: Scientific issues develop-
approach to transport measurements of electronic molecul-
ing a niche technology into a game changer[J]. Review of
es[J]. Applied Physics Letters,2002,80(15):2761−2763.
Scientific Instruments,2020,91(6):061101.
[64] GUO X F, SMALL J P, KLARE J E, et al. Covalently
bridging gaps in single-walled carbon nanotubes with con- (责任编辑:郭 云)
引文信息:韩熙隆,覃奀垚,章灿然,等. 可集成真空微纳电子器件发展与展望[J]. 真空与低温,2025,31(3):302−314.
HAN X L,QIN E Y,ZHANG C R,et al. Development and prospects of scalable vacuum micro-nanoscale electronic de-
vices[J]. Vacuum and Cryogenics,2025,31(3):302−314.