Page 41 - 《真空与低温》2025年第3期
P. 41

312                                         真空与低温                                   第 31 卷 第  3  期


              借抗辐射性、高稳定性和微型化优势,为太空技术                            [13]   JENNINGS  S.  The  mean  free-path  in  air[J].  Journal  of
              (如电推进、能源系统、抗辐射电子)提供了革命性                               Aerosol Science,1988,19(2):159−166.
              解决方案。未来,随着制造工艺的成熟和太空验证                            [14]   DU X,SKACHKO I,BARKER A,et al. Approaching bal-
              的推进,这类技术有望成为深空探测、卫星网络和                                listic transport in suspended graphene[J]. Nature Nanotech-
              空间基础设施的核心支撑,推动航天器向更高效、                                nology,2008,3(8):491−495.
              可靠、低成本的方向发展。                                      [15]   NEIDERT R,PHILLIPS P,SMITH S,et al. Field-emission
                                                                    triodes[J].  IEEE  Transactions  on  Electron  Devices, 1991,
              参考文献:
                                                                    38(3):661−665.

                                                                [16]   HAN J W,SUB OH J,MEYYAPPAN M. Vacuum nano-
              [1]   ANISIMOV A A,BELOV A V,SERGEEV T V,et al. Evo-
                                                                    electronics:Back to the future?—Gate insulated nanoscale
                 lution  of  bioamplifiers: From  vacuum  tubes  to  highly  inte-
                                                                    vacuum channel transistor[J]. Applied Physics Letters,2012,
                 grated analog front-ends[J]. Electronics,2022,11(15):2402.
                                                                    100(21):213505.
              [2]   FANTON J P. On the mythic sound of vacuum tubes[J]. AC-
                 TA IMEKO,2023,12(3):52.                        [17]   CREWE A V,EGGENBERGER D N,WALL J,et al. Elec-
              [3]   XI H,HUANG M,WANG P,et al. The development of W  tron gun using a field emission source[J]. Review of Scien-
                                                                    tific Instruments,1968,39(4):576−583.
                 waveband diffraction radiation oscillator[J]. Physics of Plas-
                 mas,2024,31(5):053101.                         [18]   DEHEER W,CHATELAIN A,UGARTE D. A carbon na-
              [4]   李晓峰,王玉春,邹雯婧. 微波真空电子器件的发展与应                      notube field-emission electron source[J]. Science,1995,270
                 用  [J]. 微波学报,2022,38(5):33−38.                     (5239):1179−1180.
              [5]   杨明,刘超,郑新. 大功率、高频段电真空器件在雷达技术                 [19]   FOWLER  R  H, NORDHEIM  L.  Electron  emission  in  in-
                 领域的应用分析     [J]. 现代雷达,2017(4):83−86.               tense electric fields[J]. Proceedings of the Royal Society A,
              [6]   SCHWANK J R,SHANEYFELT M R,DODD P E. Radia-     1928,119(781):173−181.
                 tion hardness assurance testing of microelectronic devices and  [20]   CUTLER P,HE J,MISKOVSKY N,et al. Theory of elec-
                 integrated circuits:Radiation environments,physical mecha-  tron-emission in high fields from atomically sharp emitters -
                 nisms,and foundations for hardness assurance[J]. IEEE Tran-  validity of the fowler-nordheim equation[J]. Journal of Vac-
                 sactions on Nuclear Science,2013,60(3):2074−2100.  uum Science & Technology B,1993,11(2):387−391.
              [7]   SUBRAMANIAN K,KANG W P,DAVIDSON J L,et al. A  [21]   HE J,CUTLER P,MISKOVSKY N. Generalization of fow-
                 review of recent results on diamond vacuum lateral field emi-  ler-nordheim field-emission theory for nonplanar metal emit-
                 ssion  device  operation  in  radiation  environments[J].  Micro-  ters[J]. Applied Physics Letters,1991,59(13):1644−1646.
                 electronic Engineering,2011,88(9):2924−2929.   [22]   BEEBE J M,KIM B,GADZUK J W,et al. Transition from
              [8]   SHOULDERS  K  R.  Microelectronics  using  electron-beam-  direct  tunneling  to  field  emission  in  metal-molecule-metal
                 activated machining techniques[J]. Advances in Computers,  junctions[J]. Physical Review Letters,2006,97(2):026801.
                 1961,2:135−293.                                [23]   SIMMONS J G. Generalized formula for the electric tunnel
              [9]   LI X,FENG J. Review of nanoscale vacuum devices[J]. Elec-  effect between similar electrodes separated by a thin insulat-
                 tronics,2023,12(4):802.                            ing film[J]. Journal of Applied Physics,1963,34(6):1793−
              [10]   SPINDT C A. A thin-film field-emission cathode[J]. Journal  1803.
                  of Applied Physics,1968,39(7):3504−3505.      [24]   MATTHEWS N,HAGMANN M J,MAYER A. Comment:
              [11]   KOSMAHL H. A wide-bandwidth high-gain small-size dis-  Generalized formula for the electric tunnel effect between
                  tributed-amplifier with field-emission triodes (fetrodes) for  similar  electrodes  separated  by  a  thin  insulating  film[J].
                  the 10 to 300 GHz frequency-range[J]. IEEE Transactions  Journal of Applied Physics,2018,123(13):136101.
                  on Electron Devices,1989,36(11):2728−2737.    [25]   STRATTON R. Theory of field emission from semiconduc-
              [12]   PARK S S,PARK D I,HAHM S H,et al. Fabrication of a  tors[J]. Physical Review,1962,125(1):67−82.
                  lateral field emission triode with a high current density and  [26]   BISWAS  D.  Interpreting  the  field  emission  equation  for
                  high transconductance using the local oxidation of the po-  large area field emitters[J]. Journal of Vacuum Science &
                  lysilicon layer[J]. IEEE Transactions on Electron Devices,  Technology B,2022,40(2):023201.
                  1999,46(6):1283−1289.                         [27]   JENSEN K L,KODIS M A,MURPHY R A,et al. Space
   36   37   38   39   40   41   42   43   44   45   46