Page 19 - 《武汉大学学报(信息科学版)》2025年第6期
P. 19
第 50 卷第 6 期 刘纪平等:人工智能时代下的应急测绘 1041
and Application of a Smart Emergency Response [47] 徐敬海, 周海军, 聂高众, 等 . 基于模板匹配的地震
Platfrom for Earthquake Disasters Based on Multi- 应急制图方法[J]. 地震地质, 2020, 42(3): 748-761.
source Monitoring Data[J]. The International Ar‑ XU Jinghai, ZHOU Haijun , NIE Gaozhong , et
chives of the Photogrammetry, Remote Sensing and al. Research on Earthquake Emergency Mapping
Spatial Information Sciences, 2022, XLVIII-3/ Method Based on Template Match[J]. Seismology
W1: 25-30. and Geology, 2020, 42(3): 748-761.
[38] ZHANG W H. Geological Disaster Monitoring and [48] 富璇, 闫浩文, 王小龙, 等 . 城市内涝场景下的微
Early Warning System Based on Big Data Analysis 地 图 制 作 方 法[J]. 地 球 信 息 科 学 学 报 , 2024, 26
[J]. Arabian Journal of Geosciences, 2020, 13(18): 946. (5): 1166-1179.
[39] CHEN J, ZHU Q J, SU Y P. Predictive Model of FU Xuan, YAN Haowen, WANG Xiaolong, et al. A
Artificial Neural Network for Disaster Prevention We-Map Mapping Method for Urban Waterlogging
[C]//The 2nd IEEE International Conference on In‑ Scenarios[J]. Journal of Geo ‑ Information Science,
formation Management and Engineering, Chengdu, 2024, 26(5): 1166-1179.
China, 2010. [49] WANG D Q, GUO D H, ZHANG H. Spatial Tempo‑
[40] SU X, ZHANG M J, BAI Q. Coordination for Dy‑ ral Data Visualization in Emergency Management: A
namic Weighted Task Allocation in Disaster Environ‑ View from Data-Driven Decision[C]//The 3rd ACM
ments with Time, Space and Communication Con‑ SIGSPATIAL Workshop on Emergency Manage‑
straints[J]. Journal of Parallel and Distributed ment Using, Redondo Beach, USA, 2017.
Computing, 2016, 97: 47-56. [50] GUO Y K, ZHU J, YOU J G, et al. A Dynamic
[41] HE Y F, SHENG Y H, HOFER B, et al. Processes Visualization Based on Conceptual Graphs to Cap‑
and Events in the Centre: A Dynamic Data Model ture the Knowledge for Disaster Education on Floods
for Representing Spatial Change[J]. International [J]. Natural Hazards, 2023, 119(1): 203-220.
Journal of Digital Earth, 2022, 15(1): 276-295. [51] ONORATI T, DÍAZ P, CARRION B. From Social
[42] LI M, HONG M, ZHANG R. Improved Bayesian Networks to Emergency Operation Centers: A Seman‑
Network-Based Risk Model and Its Application in tic Visualization Approach[J]. Future Generation
Disaster Risk Assessment[J]. International Journal Computer Systems, 2019, 95: 829-840.
of Disaster Risk Science, 2018, 9(2): 237-248. [52] MOUILLOT F, RATTE J P, JOFFRE R, et al.
[43] ZHU Z J, ZHANG Y. Flood Disaster Risk Assess‑ Some Determinants of the Spatio-Temporal Fire Cy‑
ment Based on Random Forest Algorithm[J]. Neu‑ cle in a Mediterranean Landscape (Corsica, France)
ral Computing and Applications, 2022, 34(5): [J]. Landscape Ecology, 2003, 18(7): 665-674.
3443-3455. [53] TANG A P, WEN A H. An Intelligent Simulation
[44] JENA R , PRADHAN B , BEYDOUN G , et al. System for Earthquake Disaster Assessment[J].
Integrated Model for Earthquake Risk Assessment Computers & Geosciences, 2009, 35(5): 871-879.
Using Neural Network and Analytic Hierarchy Pro‑ [54] SINGH N, ROY N, GANGOPADHYAY A. Ana‑
cess: Aceh Province, Indonesia [J]. Geoscience lyzing the Emotions of Crowd for Improving the
Frontiers, 2020, 11(2): 613-634. Emergency Response Services[J]. Pervasive and
[45] SUN H L, WANG Y, XUE Y F. A Bi-Objective Mobile Computing, 2019, 58: 101018.
Robust Optimization Model for Disaster Response [55] NEPPALLI V K, CARAGEA C, SQUICCIARINI
Planning Under Uncertainties[J]. Computers & In‑ A, et al. Sentiment Analysis During Hurricane Sandy
dustrial Engineering, 2021, 155: 107213. in Emergency Response[J]. International Journal of
[46] 王 杰 , 张 双 成 , 吴 桐 , 等 . 多 源 卫 星 遥 感 数 据 驱 Disaster Risk Reduction, 2017, 21: 213-222.
动 地 震 灾 害 应 急 制 图 研 究 : 以 2022 年 青 海 门 源 [56] 杨必胜, 陈一平, 邹勤 . 从大模型看测绘时空信息
Mw 6. 7 地 震 为 例[J]. 大 地 测 量 与 地 球 动 力 学 , 智能处理的机遇和挑战[J]. 武汉大学学报(信息科
2024, 44(1): 52-56. 学版), 2023, 48(11): 1756-1768.
WANG Jie, ZHANG Shuangcheng, WU Tong, et al. YANG Bisheng, CHEN Yiping, ZOU Qin. Oppor‑
Research on Earthquake Disaster Emergency Map‑ tunities and Challenges of Spatiotemporal Informa‑
ping Driven by Multi-source Satellite Remote Sensing tion Intelligent Processing of Surveying and Mapping
Data: A Case Study of the Mw 6. 7 Menyuan Earth‑ in the Era of Large Models[J]. Geomatics and Infor‑
quake in Qinghai Province in 2022[J]. Journal of mation Science of Wuhan University, 2023, 48
Geodesy and Geodynamics, 2024, 44(1): 52-56. (11): 1756-1768.