Page 19 - 《武汉大学学报(信息科学版)》2025年第6期
P. 19

第 50 卷第 6 期                    刘纪平等:人工智能时代下的应急测绘                                     1041


                    and  Application  of  a  Smart  Emergency  Response   [47]  徐敬海, 周海军, 聂高众, 等 .  基于模板匹配的地震
                    Platfrom  for  Earthquake  Disasters  Based  on  Multi-  应急制图方法[J].  地震地质, 2020, 42(3): 748-761.
                    source  Monitoring  Data[J].   The  International  Ar‑  XU  Jinghai,  ZHOU  Haijun ,  NIE  Gaozhong ,  et
                    chives  of  the  Photogrammetry,  Remote  Sensing  and   al.   Research  on  Earthquake  Emergency  Mapping
                    Spatial  Information  Sciences,  2022,  XLVIII-3/  Method  Based  on  Template  Match[J].   Seismology
                    W1: 25-30.                                       and Geology, 2020, 42(3): 748-761.
               [38]  ZHANG  W  H.   Geological  Disaster  Monitoring  and   [48]  富璇, 闫浩文, 王小龙, 等 .  城市内涝场景下的微
                    Early  Warning  System  Based  on  Big  Data  Analysis  地 图 制 作 方 法[J].  地 球 信 息 科 学 学 报 , 2024, 26
                    [J].  Arabian Journal of Geosciences, 2020, 13(18): 946.  (5): 1166-1179.
               [39]  CHEN J, ZHU Q J, SU Y P.  Predictive Model of   FU Xuan, YAN Haowen, WANG Xiaolong, et al.  A
                    Artificial  Neural  Network  for  Disaster  Prevention  We-Map  Mapping  Method  for  Urban  Waterlogging
                    [C]//The 2nd IEEE International Conference on In‑  Scenarios[J].   Journal  of  Geo ‑ Information  Science,
                    formation  Management  and  Engineering,  Chengdu,   2024, 26(5): 1166-1179.
                    China, 2010.                                [49]  WANG D Q, GUO D H, ZHANG H.  Spatial Tempo‑
               [40]  SU X, ZHANG M J, BAI Q.  Coordination for Dy‑   ral Data Visualization in Emergency Management: A
                    namic Weighted Task Allocation in Disaster Environ‑  View from Data-Driven Decision[C]//The 3rd ACM
                    ments  with  Time,  Space  and  Communication  Con‑  SIGSPATIAL  Workshop  on  Emergency  Manage‑
                    straints[J].   Journal  of  Parallel  and  Distributed   ment Using, Redondo Beach, USA, 2017.
                    Computing, 2016, 97: 47-56.                 [50]  GUO  Y  K,  ZHU  J,  YOU  J  G,  et  al.   A  Dynamic
               [41]  HE Y F, SHENG Y H, HOFER B, et al.  Processes   Visualization  Based  on  Conceptual  Graphs  to  Cap‑
                    and  Events  in  the  Centre:  A  Dynamic  Data  Model   ture the Knowledge for Disaster Education on Floods
                    for  Representing  Spatial  Change[J].   International   [J].  Natural Hazards, 2023, 119(1): 203-220.
                    Journal of Digital Earth, 2022, 15(1): 276-295.  [51]  ONORATI T, DÍAZ P, CARRION B.  From Social
               [42]  LI M, HONG M, ZHANG R.  Improved Bayesian       Networks to Emergency Operation Centers: A Seman‑
                    Network-Based  Risk  Model  and  Its  Application  in   tic  Visualization  Approach[J].   Future  Generation
                    Disaster Risk Assessment[J].  International Journal   Computer Systems, 2019, 95: 829-840.
                    of Disaster Risk Science, 2018, 9(2): 237-248.  [52]  MOUILLOT F, RATTE J P, JOFFRE R, et al.
               [43]  ZHU Z J, ZHANG Y.  Flood Disaster Risk Assess‑  Some Determinants of the Spatio-Temporal Fire Cy‑
                    ment Based on Random Forest Algorithm[J].  Neu‑  cle in a Mediterranean Landscape (Corsica, France)
                    ral  Computing  and  Applications,  2022,  34(5):   [J].  Landscape Ecology, 2003, 18(7): 665-674.
                    3443-3455.                                  [53]  TANG A P, WEN A H.  An Intelligent Simulation
               [44]  JENA  R ,  PRADHAN  B ,  BEYDOUN  G ,  et  al.    System  for  Earthquake  Disaster  Assessment[J].
                    Integrated  Model  for  Earthquake  Risk  Assessment   Computers & Geosciences, 2009, 35(5): 871-879.
                    Using  Neural  Network  and  Analytic  Hierarchy  Pro‑  [54]  SINGH N, ROY N, GANGOPADHYAY A.  Ana‑
                    cess:  Aceh  Province,  Indonesia [J].   Geoscience   lyzing  the  Emotions  of  Crowd  for  Improving  the
                    Frontiers, 2020, 11(2): 613-634.                 Emergency  Response  Services[J].   Pervasive  and
               [45]  SUN H L, WANG Y, XUE Y F.  A Bi-Objective       Mobile Computing, 2019, 58: 101018.
                    Robust  Optimization  Model  for  Disaster  Response   [55]  NEPPALLI V K, CARAGEA C, SQUICCIARINI
                    Planning  Under  Uncertainties[J].   Computers  &  In‑  A, et al.  Sentiment Analysis During Hurricane Sandy
                    dustrial Engineering, 2021, 155: 107213.         in Emergency Response[J].  International Journal of
               [46]  王 杰 , 张 双 成 , 吴 桐 , 等 .  多 源 卫 星 遥 感 数 据 驱      Disaster Risk Reduction, 2017, 21: 213-222.
                    动 地 震 灾 害 应 急 制 图 研 究 : 以 2022 年 青 海 门 源    [56]  杨必胜, 陈一平, 邹勤 .  从大模型看测绘时空信息
                    Mw 6. 7 地 震 为 例[J].  大 地 测 量 与 地 球 动 力 学 ,       智能处理的机遇和挑战[J].  武汉大学学报(信息科
                    2024, 44(1): 52-56.                              学版), 2023, 48(11): 1756-1768.
                    WANG Jie, ZHANG Shuangcheng, WU Tong, et al.     YANG Bisheng, CHEN Yiping, ZOU Qin.  Oppor‑
                    Research  on  Earthquake  Disaster  Emergency  Map‑  tunities  and  Challenges  of  Spatiotemporal  Informa‑
                    ping Driven by Multi-source Satellite Remote Sensing   tion Intelligent Processing of Surveying and Mapping
                    Data: A Case Study of the Mw 6. 7 Menyuan  Earth‑  in the Era of Large Models[J].  Geomatics and Infor‑
                    quake  in  Qinghai  Province  in  2022[J].  Journal of   mation  Science  of  Wuhan  University,  2023,  48
                    Geodesy and Geodynamics, 2024, 44(1): 52-56.    (11): 1756-1768.
   14   15   16   17   18   19   20   21   22   23   24