Page 18 - 《武汉大学学报(信息科学版)》2025年第6期
P. 18

1040                            武 汉 大 学 学 报  (信 息 科 学 版)                        2025 年 6 月

                     Technology, 2021, 70(12): 12302-12311.          Correlation  and  Applied  in  Multi-source  Emergency
                [18]  RAZA  M,  LE-MINH  H,  ASLAM  N,  et  al.   Dy‑  Events  Fusion[J].   International  Journal  of  Image
                     namic Priority Based Reliable Real-Time Communi‑  and Data Fusion, 2021, 12(4): 319-334.
                     cations  for  Infrastructure-Less  Networks[J].   IEEE   [30]  林森, 刘蓓蓓, 李建文, 等 .  基于 BERT 迁移学习
                     Access, 2018, 6: 67338-67359.                   模型的地震灾害社交媒体信息分类研究[J].  武汉
                [19]  JIANG  C  H,  SHEN  J  C,  CHEN  S,  et  al.   UWB   大学学报(信息科学版), 2024, 49(9): 1661-1671.
                     NLOS/LOS  Classification  Using  Deep  Learning   LIN  Sen,  LIU  Beibei,  LI  Jianwen,  et  al.   Social
                     Method[J].   IEEE  Communications  Letters,  2020,   Media  Information  Classification  of  Earthquake  Di‑
                     24(10): 2226-2230.                              sasters  Based  on  BERT  Transfer  Learning  Model
                [20]  DAI P, YANG Y, ZHANG C C, et al.  Analysis of   [J].   Geomatics  and  Information  Science  of  Wuhan
                     Target  Detection  Based  on  UWB  NLOS  Ranging   University, 2024, 49(9): 1661-1671.
                     Modeling[C]//Ubiquitous Positioning, Indoor Navi‑  [31]  廖永丰, 吴玮, 杨赛霓, 等 .  自然灾害综合风险防
                     gation  and  Location-Based  Services (UPINLBS),   范信息服务技术体系构建及展望[J].  地球信息科
                     Wuhan, China, 2018.                             学学报, 2022, 24(12): 2282-2296.
                [21]  LI W J, ZHANG T T, ZHANG Q Y.  Experimen‑      LIAO  Yongfeng,  WU  Wei,  YANG  Saini,  et  al.
                     tal  Researches  on  an  UWB  NLOS  Identification   Construction  and  Prospect  of  Information  Service
                     Method Based on Machine Learning[C]//The 15th   Technology System for Comprehensive Risk Preven‑
                     IEEE  International  Conference  on  Communication   tion  of  Natural  Disasters[J].   Journal  of  Geo ‑ Infor‑
                     Technology, Guilin, China, 2013.                mation Science, 2022, 24(12): 2282-2296.
                [22]  GAO D Y, LI A, FU J.  Analysis of Positioning Per‑  [32]  任丽艳, 李英成, 肖金城, 等 .  测绘无人机灾害现
                     formance of UWB System in Metal NLOS Environ‑   场多源数据集成与智能服务[J].  测绘科学, 2020,
                     ment[C]//Chinese  Automation  Congress (CAC),   45(12): 139-144.
                     Xi’an, China, 2018.                             REN Liyan, LI Yingcheng, XIAO Jincheng, et al.
                [23]  YANG  H,  LI  X  B,  PEDRYCZ  W.   Performance   Multi-source Data Integration and Intelligent Service
                     Evaluation  of  Three-Dimensional  UWB  Real-Time   of  Surveying  and  Mapping  UAV  for  Disaster  Scene
                     Locating  Auto-Positioning  System  for  Fire  Rescue  [J].   Science  of  Surveying  and  Mapping,  2020,  45
                    [J].   Intelligent  Automation  &  Soft  Computing,   (12): 139-144.
                     2023, 37(3): 3039-3058.                    [33]  XIAO H M, WANG L, CUI C S.  Research on Emer‑
                [24]  JI M X, REN G H, ZHANG H J, et al.  Collabora‑  gency Management of Urban Waterlogging Based on
                     tive  Positioning  for  Emergency  Rescuers  Based  on   Similarity Fusion of Multi-source Heterogeneous Data
                     INS, GPS and ZigBee[J].  Physica Scripta, 2024,   [J].  PLoS One, 2022, 17(7): e0270925.
                     99(6): 065530.                             [34]  MA  Z  J,  MEI  G.   Deep  Learning  for  Geological
                [25]  LIU R, GREVE K, CUI P Y, et al.  Collaborative   Hazards Analysis: Data, Models, Applications, and
                     Positioning  Method  via  GPS/INS  and  RS/MO   Opportunities[J].   Earth ‑ Science  Reviews,  2021,
                     Multi-source Data Fusion in Multi-target Navigation  223: 103858.
                    [J].  Survey Review, 2022, 54(383): 95-105.  [35]  JENA  R,  PRADHAN  B,  BEYDOUN  G,  et  al.
                [26]  TANG C K, WANG C, ZHANG L L, et al.  Vehi‑     Seismic Hazard and Risk Assessment: A Review of
                     cle  Heterogeneous  Multi-source  Information  Fusion   State-of-the-Art  Traditional  and  GIS  Models[J].
                     Positioning  Method[J].   IEEE  Transactions  on  Ve‑  Arabian Journal of Geosciences, 2020, 13(2): 50.
                     hicular Technology, 2024, 73(9): 12597-12613.  [36]  徐胜华, 刘纪平, 王想红, 等 .  熵指数融入支持向
                [27]  GOSWAMI S, CHAKRABORTY S, GHOSH S,             量机的滑坡灾害易发性评价方法: 以陕西省为例
                     et  al.   A  Review  on  Application  of  Data  Mining   [J].  武 汉 大 学 学 报(信 息 科 学 版), 2020, 45(8):
                     Techniques  to  Combat  Natural  Disasters[J].   Ain   1214-1222.

                     Shams Engineering Journal, 2018, 9(3): 365-378.  XU  Shenghua,  LIU  Jiping,  WANG  Xianghong,  et
                [28]  ALGIRIYAGE  N,  PRASANNA  R,  STOCK  K,        al.   Landslide  Susceptibility  Assessment  Method  In‑
                     et  al.   Multi-source  Multimodal  Data  and  Deep   corporating Index of Entropy Based on Support Vec‑
                     Learning  for  Disaster  Response:  A  Systematic  Re‑  tor Machine: A Case Study of Shaanxi Province[J].
                     view[J].  SN Computer Science, 2022, 3(1): 92.  Geomatics  and  Information  Science  of  Wuhan  Uni‑
                [29]  LUO A, LIU J P, LI P P, et al.  Chinese Address   versity, 2020, 45(8): 1214-1222.
                     Standardisation  of  POIs  Based  on  GRU  and  Spatial   [37]  LI W, WANG Q, CHENG W, et al.  Development
   13   14   15   16   17   18   19   20   21   22   23