Page 168 - 《武汉大学学报(信息科学版)》2025年第6期
P. 168
1190 武 汉 大 学 学 报 (信 息 科 学 版) 2025 年 6 月
04-17]. https://arxiv. org/abs/1704. 04861. Evaluation of Landslide Disaster Susceptibility[J].
[31] 庞沛东 . 基于深度卷积神经网络的高光谱图像分类 Acta Geodaetica et Cartographica Sinica, 2022, 51
方法研究[D]. 开封: 河南大学, 2021. (10): 2034-2045.
PANG Peidong. Research on Hyperspectral Image [38] ZHAO Z, LIU Z Y, XU C. Slope Unit-Based
Classification Method Based on Deep Convolution Landslide Susceptibility Mapping Using Certainty
Neural Network[D]. Kaifeng: Henan University, Factor, Support Vector Machine, Random Forest,
2021. CF-SVM and CF-RF Models[J]. Frontiers in
[32] WOO S, PARK J, LEE J Y, et al. CBAM: Con‑ Earth Science, 2021, 9: 589630.
volutional Block Attention Module[C]// European [39] 赵占骜, 王继周, 毛曦, 等 . 多维 CNN 耦合的滑坡
Conference on Computer Vision (ECCV), Munich, 易发性评价方法[J]. 武汉大学学报(信息科学版),
Germany, 2018. 2024, 49(8): 1466-1481.
[33] CHEN L C, PAPANDREOU G, SCHROFF F, ZHAO Zhan’ao, WANG Jizhou, MAO Xi, et al.
et al. Rethinking Atrous Convolution for Semantic A Multi-dimensional CNN Coupled Landslide Sus‑
Image Segmentation [EB/OL]. [2023-01-17]. ceptibility Assessment Method[J]. Geomatics and
https://arxiv. org/abs/1706. 05587. Information Science of Wuhan University, 2024, 49
[34] DAI J F, QI H Z, XIONG Y W, et al. Deformable (8): 1466-1481.
Convolutional Networks [C]//IEEE International [40] YILMAZ E O , TEKE A , KAVZOGLU T. Per‑
Conference on Computer Vision (ICCV), Venice, formance Evaluation of Depthwise Separable CNN
Italy, 2017. and Random Forest Algorithms for Landslide Sus‑
[35] HAN L T, LV H Y, ZHAO Y C, et al. Conv-For‑ ceptibility Prediction[C]//IEEE International Geo‑
mer: A Novel Network Combining Convolution and science and Remote Sensing Symposium, Kuala
Self-Attention for Image Quality Assessment[J]. Lumpur, Malaysia, 2022.
Sensors, 2022, 23(1): 427. [41] ZHAO Z A, HE Y, YAO S, et al. A Comparative
[36] AZARAFZA M, AZARAFZA M, AKGÜN H, et Study of Different Neural Network Models for Land‑
al. Deep Learning-Based Landslide Susceptibility slide Susceptibility Mapping[J]. Advances in Space
Mapping[J]. Scientific Reports, 2021, 11(1): 24112. Research, 2022, 70(2): 383-401.
[37] 刘纪平, 梁恩婕, 徐胜华, 等 . 顾及样本优化选择 [42] JANARTHANAN S S, SUBBIAN D, SUBBA‑
的多核支持向量机滑坡灾害易发性分析评价[J]. RAYAN S, et al. SFCNet: Deep Learning-Based
测绘学报, 2022, 51(10): 2034-2045. Lightweight Separable Factorized Convolution Net‑
LIU Jiping, LIANG Enjie, XU Shenghua, et al. work for Landslide Detection[J]. Journal of the In‑
Multi-kernel Support Vector Machine Considering dian Society of Remote Sensing, 2023, 51(6):
Sample Optimization Selection for Analysis and 1157-1170.