Page 168 - 《武汉大学学报(信息科学版)》2025年第6期
P. 168

1190                            武 汉 大 学 学 报  (信 息 科 学 版)                        2025 年 6 月

                     04-17].  https://arxiv. org/abs/1704. 04861.    Evaluation  of  Landslide  Disaster  Susceptibility[J].
                [31]  庞沛东 .  基于深度卷积神经网络的高光谱图像分类                      Acta Geodaetica et Cartographica Sinica, 2022, 51
                     方法研究[D].  开封: 河南大学, 2021.                       (10): 2034-2045.
                     PANG  Peidong.   Research  on  Hyperspectral  Image   [38]  ZHAO  Z,  LIU  Z  Y,  XU  C.   Slope  Unit-Based
                     Classification  Method  Based  on  Deep  Convolution   Landslide  Susceptibility  Mapping  Using  Certainty
                     Neural  Network[D].   Kaifeng:  Henan  University,   Factor,  Support  Vector  Machine,  Random  Forest,
                     2021.                                           CF-SVM  and  CF-RF  Models[J].   Frontiers  in
                [32]  WOO S, PARK J, LEE J Y, et al.  CBAM: Con‑     Earth Science, 2021, 9: 589630.
                     volutional  Block  Attention  Module[C]//  European   [39]  赵占骜, 王继周, 毛曦, 等 .  多维 CNN 耦合的滑坡
                     Conference on Computer Vision (ECCV), Munich,   易发性评价方法[J].  武汉大学学报(信息科学版),
                     Germany, 2018.                                  2024, 49(8): 1466-1481.
                [33]  CHEN  L  C,  PAPANDREOU  G,  SCHROFF  F,       ZHAO  Zhan’ao,  WANG  Jizhou,  MAO  Xi,  et  al.
                     et  al.   Rethinking  Atrous  Convolution  for  Semantic   A  Multi-dimensional  CNN  Coupled  Landslide  Sus‑
                     Image  Segmentation [EB/OL].   [2023-01-17].    ceptibility  Assessment  Method[J].   Geomatics  and
                     https://arxiv. org/abs/1706. 05587.             Information Science of Wuhan University, 2024, 49
                [34]  DAI J F, QI H Z, XIONG Y W, et al.  Deformable   (8): 1466-1481.
                     Convolutional  Networks [C]//IEEE  International   [40]  YILMAZ  E  O ,  TEKE  A ,  KAVZOGLU  T.   Per‑
                     Conference  on  Computer  Vision (ICCV),  Venice,   formance  Evaluation  of  Depthwise  Separable  CNN
                     Italy, 2017.                                    and  Random  Forest  Algorithms  for  Landslide  Sus‑
                [35]  HAN L T, LV H Y, ZHAO Y C, et al.  Conv-For‑   ceptibility  Prediction[C]//IEEE  International  Geo‑
                     mer: A Novel Network Combining Convolution and   science  and  Remote  Sensing  Symposium,  Kuala
                     Self-Attention  for  Image  Quality  Assessment[J].    Lumpur, Malaysia, 2022.
                     Sensors, 2022, 23(1): 427.                 [41]  ZHAO Z A, HE Y, YAO S, et al.  A Comparative
                [36]  AZARAFZA M, AZARAFZA M, AKGÜN H, et            Study of Different Neural Network Models for Land‑
                     al.   Deep  Learning-Based  Landslide  Susceptibility   slide Susceptibility Mapping[J].  Advances in Space
                     Mapping[J].  Scientific Reports, 2021, 11(1): 24112.  Research, 2022, 70(2): 383-401.
                [37]  刘纪平, 梁恩婕, 徐胜华, 等 .  顾及样本优化选择              [42]  JANARTHANAN  S  S,  SUBBIAN  D,  SUBBA‑
                     的多核支持向量机滑坡灾害易发性分析评价[J].                         RAYAN  S,  et  al.   SFCNet:  Deep  Learning-Based
                     测绘学报, 2022, 51(10): 2034-2045.                  Lightweight  Separable  Factorized  Convolution  Net‑
                     LIU  Jiping,  LIANG  Enjie,  XU  Shenghua,  et  al.    work for Landslide Detection[J].  Journal of the In‑
                     Multi-kernel  Support  Vector  Machine  Considering   dian  Society  of  Remote  Sensing,  2023,  51(6):
                     Sample  Optimization  Selection  for  Analysis  and   1157-1170.
   163   164   165   166   167   168   169   170   171   172   173