Page 166 - 《武汉大学学报(信息科学版)》2025年第6期
P. 166

1188                            武 汉 大 学 学 报  (信 息 科 学 版)                        2025 年 6 月

                     Nanchang : Nanchang University , 2022.          (1): 820-835.
                [2]  牛鹏飞 .  基于综合指数模型的舟曲县滑坡易发性评                  [9]  PANCHAL S, SHRIVASTAVA A K.  A Compara‑
                     价[D].  石家庄: 河北地质大学, 2021.                       tive  Study  of  Frequency  Ratio,  Shannon’s  Entropy
                     NIU Pengfei.  Landslide Susceptibility Evaluation in   and  Analytic  Hierarchy  Process (AHP)  Models  for
                     Zhouqu  County  Based  on  Comprehensive  Index   Landslide  Susceptibility  Assessment[J].   ISPRS  In‑
                     Model[D].   Shijiazhuang:  Hebei  GEO  University,   ternational  Journal  of  Geo ‑ Information,  2021,  10
                     2021.                                           (9): 603.
                [3]  ZHOU S H, ZHOU S K, TAN X.  Nationwide Sus‑  [10]  许嘉慧, 张虹, 文海家, 等 .  基于逻辑回归的巫山
                     ceptibility Mapping of Landslides in Kenya Using the   县滑坡易发性区划研究[J].  重庆师范大学学报(自
                     Fuzzy Analytic Hierarchy Process Model[J].  Land,   然科学版), 2021, 38(2): 48-56.
                     2020, 9(12): 535.                               XU  Jiahui,  ZHANG  Hong,  WEN  Haijia,  et  al.
                [4]  崔志超, 王俊豪, 崔传峰, 等 .  基于层次分析法和                    Landslide  Susceptibility  Mapping  Based  on  Logistic
                     模糊数学相结合的甘肃东乡八丹沟泥石流易发性                           Regression  in  Wushan  County [J].   Journal  of
                     评价[J].  中国地质灾害与防治学报, 2020, 31(1):               Chongqing  Normal  University (Natural  Science),
                     44-50.                                          2021, 38(2): 48-56.
                     CUI  Zhichao,  WANG  Junhao,  CUI  Chuanfeng,  et   [11]  LIU  Y,  ZHAO  L  J,  BAO  A  M,  et  al.   Chinese
                     al.  Evaluation of the Susceptibility of Debris Flow in   High  Resolution  Satellite  Data  and  GIS-Based  As‑
                     Badan  Gully  of  Dongxiang  County  of  Gansu  Based   sessment of Landslide Susceptibility Along Highway
                     on  AHP  and  Fuzzy  Mathematics[J].   The  Chinese   G30  in  Guozigou  Valley  Using  Logistic  Regression
                     Journal  of  Geological  Hazard  and  Control,  2020,   and  MaxEnt  Model[J].   Remote  Sensing,  2022,  14
                     31(1): 44-50.                                   (15): 3620.
                [5]  刘福臻, 王灵, 肖东升, 等 .  基于模糊综合评判法               [12]  钱紫玲, 王平, 李娜, 等 .  基于信息量和逻辑回归
                     的 宁 南 县 滑 坡 易 发 性 评 价[J].   自 然 灾 害 学 报 ,       耦合模型的黄土地震滑坡危险性分析[J].  地震工
                     2021, 30(5): 237-246.                           程学报, 2023, 45(3): 706-715.
                     LIU  Fuzhen,  WANG  Ling,  XIAO  Dongsheng,  et   QIAN  Ziling,  WANG  Ping,  LI  Na,  et  al.   Risk
                     al.  Evaluation of Landslide Susceptibility in Ningnan   Analysis  of  Loess  Seismic  Landslides  Based  on  an
                     County  Based  on  Fuzzy  Comprehensive  Evaluation  Information  Value-Logistic  Regression  Coupling
                    [J].   Journal  of  Natural  Disasters,  2021,  30(5):   Model[J].  China Earthquake Engineering Journal,
                     237-246.                                        2023, 45(3): 706-715.
                [6]  胡燕, 李德营, 孟颂颂, 等 .  基于证据权法的巴东               [13]  刘睿, 施婌娴, 孙德亮, 等 .  基于 GIS 与随机森林
                     县 城 滑 坡 灾 害 易 发 性 评 价[J].   地 质 科 技 通 报 ,       的巫山县滑坡易发性区划[J].  重庆师范大学学报
                     2020, 39(3): 187-194.                           (自然科学版), 2020, 37(3): 86-96.
                     HU  Yan,  LI  Deying,  MENG  Songsong,  et  al.    LIU  Rui,  SHI  Shuxian ,  SUN  Deliang ,  et  al.
                     Landslide Susceptibility Evaluation in Badong Coun‑  Based  on  GIS  and  Random  Forest  Model  for  Land‑
                     ty Based on Weights of Evidence Method[J].  Bulle‑  slide  Susceptibility  Mapping  in  Wushan  County
                     tin of Geological Science and Technology, 2020, 39  [J].   Journal  of  Chongqing  Normal  University
                    (3): 187-194.                                    (Natural Science), 2020 , 37(3): 86-96.
                [7]  周晓亭, 黄发明, 吴伟成, 等 .  基于耦合信息量法               [14]  吴润泽, 胡旭东, 梅红波, 等 .  基于随机森林的滑
                     选择负样本的区域滑坡易发性预测[J].  工程科学                       坡 空 间 易 发 性 评 价 : 以 三 峡 库 区 湖 北 段 为 例[J].
                     与技术, 2022, 54(3): 25-35.                        地球科学, 2021, 46(1): 321-330.
                     ZHOU Xiaoting, HUANG Faming, WU Weicheng,       WU Runze, HU Xudong, MEI Hongbo, et al.  Spa‑
                     et  al.   Regional  Landslide  Susceptibility  Prediction   tial  Susceptibility  Assessment  of  Landslides  Based
                     Based on Negative Sample Selected by Coupling In‑  on Random Forest: A Case Study from Hubei Sec‑
                     formation Value Method[J].  Advanced Engineering   tion in the Three Gorges Reservoir Area[J].  Earth
                     Sciences, 2022, 54(3): 25-35.                   Science, 2021, 46(1): 321-330.
                [8]  WANG Q Q, GUO Y H, LI W P, et al.  Predictive   [15]  KAVZOGLU  T,  TEKE  A.   Predictive  Perfor-
                     Modeling  of  Landslide  Hazards  in  Wen  County,   mances  of  Ensemble  Machine  Learning  Algorithms
                     Northwestern  China  Based  on  Information  Value,   in  Landslide  Susceptibility  Mapping  Using  Random
                     Weights-of-Evidence,  and  Certainty  Factor [J].    Forest, Extreme Gradient Boosting (XGBoost) and
                     Geomatics,  Natural  Hazards  and  Risk,  2019,  10  Natural Gradient Boosting (NGBoost)[J].  Arabian
   161   162   163   164   165   166   167   168   169   170   171