Page 146 - 《水产学报》2025年第8期
P. 146

张铮,等                                                                  水产学报, 2025, 49(8): 089512

              [  6  ]   Ren Q, Wang X Y, Li W S, et al. Research of dissolved oxy-  [14]   Wang H, Zhang L X, Hu X, et al. Design and optimization of
                    gen  prediction  in  recirculating  aquaculture  systems  based  on  precision fertilization  control  system  based  on  hybrid   optim-
                    deep  belief  network[J].  Aquacultural  Engineering,  2020,  90:  ized fractional-order PID algorithm[J]. Processes, 2023, 11(12):
                    102085.                                         3374.
              [  7  ]   Xiang Z L, Ji D M, Zhang H, et al. A simple PID-based strategy  [15]   He Z Q. Research on UAV flight control and communication
                    for particle swarm optimization algorithm[J]. Information Sci-
                                                                    method based on fuzzy adaptive[J]. Wireless Networks, 2024,
                    ences, 2019, 502: 558-574.
                                                                    30(6): 6105-6113.
              [  8  ]   Cao F L. PID controller optimized by genetic algorithm for dir-
                                                              [16]   Wang Y H, Zhang H Y, He S Y, et al. Dynamic analysis and
                    ect-drive servo system[J]. Neural Computing and Applications,
                                                                    control  optimization  of  hydrogen  supply  for  the  proton
                    2020, 32(1): 23-30.
                                                                    exchange membrane fuel cell and metal hydride coupling sys-
              [  9  ]   Du X J, Wang J L, Jegatheesan V, et al. Dissolved oxygen con-
                                                                    tem  with  a  hydrogen  buffer  tank[J].  Energy  Conversion  and
                    trol  in  activated  sludge  process  using  a  neural  network-based
                                                                    Management, 2023, 291: 117339.
                    adaptive PID algorithm[J]. Applied Sciences, 2018, 8(2): 261.
                                                              [17]   Guo J J, Dong J Q, Zhou B, et al. A hybrid model for the pre-
              [10]   Zhou X H, Li D L, Zhang L, et al. Application of an adaptive
                                                                    diction  of  dissolved  oxygen  in  seabass  farming[J].  Computers
                    PID  controller  enhanced  by  a  differential  evolution  algorithm
                                                                    and Electronics in Agriculture, 2022, 198: 106971.
                    for precise control of dissolved oxygen in recirculating aquacul-
                                                              [18]   Li W S, Wei Y G, An D, et al. LSTM-TCN: dissolved oxygen
                    ture systems[J]. Biosystems Engineering, 2021, 208: 186-198.
                                                                    prediction  in  aquaculture,  based  on  combined  model  of  long
              [11]   贺刚, 蔡晓华, 白阳, 等. 基于模糊  PID  的犊牛代乳粉奶液温
                                                                    short-term memory  network  and  temporal  convolutional   net-
                    度控制系统设计与试验     [J]. 农业机械学报, 2022, 53(3): 266-
                                                                    work[J]. Environmental Science and Pollution Research, 2022,
                    276.
                                                                    29(26): 39545-39556.
                    He G, Cai X H, Bai Y, et al. Design and test of temperature
                                                              [19]   Gama J, Žliobaitė I, Bifet A, et al. A survey on concept drift
                    control  system  of  calf  milk  replacer  solution  based  on  fuzzy
                                                                    adaptation[J]. ACM Computing Surveys (CSUR), 2014, 46(4):
                    PID[J].  Transactions  of  the  Chinese  Society  for  Agricultural
                                                                    1-37.
                    Machinery, 2022, 53(3): 266-276 (in Chinese).
                                                              [20]   Pham Q, Liu C H, Sahoo D, et al. Learning fast and slow for
              [12]   Hanna Y F, Khater A A, El-Bardini M, et al. Real time adapt-
                                                                    online  time  series  forecasting[J].  arXiv  preprint  arXiv:  2202.
                    ive PID controller based on quantum neural network for nonlin-
                    ear  systems[J].  Engineering Applications  of  Artificial   Intelli-  11672, 2022.
                    gence, 2023, 126: 106952.                 [21]   Liu M H, Zeng A L, Chen M X, et al. SCINet: time series mod-
              [13]   Ye Y T, Wang Y T, Wang L, et al. A modified predictive PID  eling and forecasting with sample convolution and interaction
                    controller for dynamic positioning of vessels with autoregress-  [J]. Advances in Neural Information Processing Systems, 2022,
                    ive model[J]. Ocean Engineering, 2023, 284: 115176.  35: 5816-5828.

























              https://www.china-fishery.cn                           中国水产学会主办    sponsored by China Society of Fisheries
                                                            12
   141   142   143   144   145   146   147   148   149   150   151