Page 39 - 《水产学报》2025年第7期
P. 39

张东,等                                                                  水产学报, 2025, 49(7): 079103

                    intelligence in fish feeding system for dispensing feed based on  and design of WSN sensor nodes based on machine learning,
                    fish feeding intensity[J]. IEEE Access, 2020, 8: 91948-91960.  embedded systems and IoT approaches for pollutant detection
              [38]   Peixoto  S,  Soares  R,  Allen  Davis  D.  An  acoustic  based  in  aquatic  environments[J].  IEEE  Access,  2023,  11:  117040-
                    approach to evaluate the effect of different diet lengths on feed-  117052.
                    ing behavior of Litopenaeus vannamei[J]. Aquacultural Engin-  [50]   Hu W C, Chen L B, Wang B H, et al. Design and implementa-
                    eering, 2020, 91: 102114.                       tion  of  a  full-time  artificial  intelligence  of  things-based  water
              [39]   Hu W C, Chen L B, Huang B K, et al. A computer vision-based  quality inspection and prediction system for intelligent aquacul-
                    intelligent  fish  feeding  system  using  deep  learning  techniques  ture[J]. IEEE Sensors Journal, 2024, 24(3): 3811-3821.
                    for  aquaculture[J].  IEEE  Sensors  Journal,  2022,  22(7):  7185-  [51]   Kumar  D  S,  Prabhaker  L  C,  Shanmugapriya  T,  et  al.  Water
                    7194.                                           quality  evaluation  and  monitoring  model  (WQEM)  using
              [40]   Li H, Chatzifotis S, Lian G P, et al. Mechanistic model based  machine  learning  techniques  with  IoT[J].  Water  Resources,
                    optimization  of  feeding  practices  in  aquaculture[J].  Aquacul-  2024, 51(6): 1094-1110.
                    tural Engineering, 2022, 97: 102245.      [52]   李思平, 张东, 段明. 动物个性和行为集: 概念、测试和分析
              [41]   Huang M, Zhou Y G, Yang X G, et al. Optimizing feeding fre-  [J]. 水生生物学报, 2022, 46(6): 922-932.
                    quencies  in  fish:  a  meta-analysis  and  machine  learning  Li S P, Zhang D, Duan M. Animal personalities and behavioral
                    approach[J]. Aquaculture, 2025, 595: 741678.    syndromes:  conception,  measurements  and  analysis[J].  Acta
              [42]   Zhao H X, Cui H W, Qu K M, et al. A fish appetite assessment  Hydrobiologica Sinica, 2022, 46(6): 922-932 (in Chinese).
                    method based on improved ByteTrack and spatiotemporal graph  [53]   Fischer J L, Roseman E F, Mayer C, et al. If you build it and
                    convolutional network[J]. Biosystems Engineering, 2024, 240:  they  come,  will  they  stay?  Maturation  of  constructed  fish
                    46-55.                                          spawning reefs in the St. Clair-Detroit River System[J]. Ecolo-
              [43]   曹正良, 蒋千庆, 姜珊, 等. 基于改进残差网络的罗氏沼虾发                gical Engineering, 2020, 150: 105837.
                    声信号分类方法    [J]. 水产学报, 2025, 49(7): 079616.  [54]   Hylkema A, Debrot A O, Cammenga R A R, et al. The effect of
                    Cao Z L, Jiang Q Q, Jiang S, et al. Acoustic signal classifica-  artificial reef design on the attraction of herbivorous fish and on
                    tion method of Macrobrachium rosenbergii based on improved  coral recruitment, survival and growth[J]. Ecological Engineer-
                    residual network[J]. Journal of Fisheries of China, 2025, 49(7):  ing, 2023, 188: 106882.
                    079616 (in Chinese).                      [55]   Kemp P S, Anderson J J, Vowles A S. Quantifying behaviour of
              [44]   Park Y, Cho K H, Park J, et al. Development of early-warning  migratory fish: application of signal detection theory to fisher-
                    protocol  for  predicting  chlorophyll-a  concentration  using  ies engineering[J]. Ecological Engineering, 2012, 41: 22-31.
                    machine learning models in freshwater and estuarine reservoirs,  [56]   Kammerlander H, Schlosser L, Zeiringer B, et al. Downstream
                    Korea[J]. Science of the Total Environment, 2015, 502: 31-41.  passage behavior  of  potamodromous  fishes  at  the  fish   protec-
              [45]   Liu J, Zhang T, Han G J, et al. TD-LSTM: temporal depend-  tion and guidance system “Flexible Fish Fence”[J]. Ecological
                    ence-based   LSTM   networks   for   marine   temperature  Engineering, 2020, 143: 105698.
                    prediction[J]. Sensors, 2018, 18(11): 3797.  [57]   Renardy S, Takriet A, Benitez J P, et al. Trying to choose the
              [46]   Sun M, Yang X F, Xie Y G. Deep learning in aquaculture: a  less bad route: individual migratory behaviour of Atlantic sal-
                    review[J]. Journal of Computers, 2020, 31(1): 294-319.  mon smolts (Salmo salar L.) approaching a bifurcation between
              [47]   Singh M, Sahoo K S, Nayyar A. Sustainable IoT solution for  a  hydropower  station  and  a  navigation  canal[J].  Ecological
                    freshwater  aquaculture  management[J].  IEEE  Sensors  Journal,  Engineering, 2021, 169: 106304.
                    2022, 22(16): 16563-16572.                [58]   Sonnino Sorisio G, Wilson C A M E, Don A, et al. Fish pas-
              [48]   Khan P W, Byun Y C. Optimized dissolved oxygen prediction  sage solution: European eel kinematics and behaviour in shear
                    using  genetic  algorithm  and  bagging  ensemble  learning  for  layer  turbulent  flows[J].  Ecological  Engineering,  2024,  203:
                    smart fish farm[J]. IEEE Sensors Journal, 2023, 23(13): 15153-  107254.
                    15164.                                    [59]   Brown A E X, De Bivort B. Ethology as a physical science[J].
              [49]   Da Silva Y F, Freire R C S, Da Fonseca Neto J V. Conception  Nature Physics, 2018, 14(7): 653-657.

              中国水产学会主办  sponsored by China Society of Fisheries                          https://www.china-fishery.cn
                                                            7
   34   35   36   37   38   39   40   41   42   43   44