Page 37 - 《水产学报》2025年第7期
P. 37

张东,等                                                                  水产学报, 2025, 49(7): 079103

              工作的重点之一。                                              Society B: Biological Sciences, 2010, 365(1550): 2163-2176.

              3.7    数据质量与标准化                                 [  2  ]   Matley J K, Klinard N V, Barbosa Martins A P, et al. Global
                                                                    trends  in  aquatic  animal  tracking  with  acoustic  telemetry[J].
                   了解动物的行为对于行为学知识的广泛应
                                                                    Trends in Ecology & Evolution, 2022, 37(1): 79-94.
              用具有重要意义。然而,现有的动物行为数据
                                                              [  3  ]   Yang  C,  Su  X  P,  Liu  D  P,  et  al.  A  new  method  of  aquatic
              集在多个方面存在局限性,包括动物类别、数
                                                                    animal  personality  analysis  based  on  machine  learning
              据样本和提供的任务数量有限,以及环境条件
                                                                    (PAML): taking swimming crab Portunus trituberculatus as an
              和视角的变化有限。为了更全面地了解自然动
                                                                    example[J]. Frontiers in Marine Science, 2020, 7: 32.
              物行为,数据集应该涵盖广泛的环境,包括背
                                                              [  4  ]   Arablouei R, Wang Z W, Bishop-Hurley G J, et al. Multimodal
              景、视角、光照和天气条件的变化。
                                                                    sensor data fusion for in-situ classification of animal behavior
                   采集海量数据为         AI 模型提供训练素材固
                                                                    using  accelerometry  and  GNSS  data[J].  Smart  Agricultural
              然重要,但高质量、格式统一的数据更重要。
                                                                    Technology, 2023, 4: 100163.
              高质量数据能让         AI 模型准确学习模式和规律,
                                                              [  5  ]   Banerjee S C, Khan K A, Sharma R. Deep-worm-tracker: deep
              做出正确决策,并提高            AI 模型的泛化能力。未
                                                                    learning methods for accurate detection and tracking for behavi-
              来需要制定统一的水生动物行为学数据采集与
              标准,建立共享平台,以便于跨机构、跨区域                                  oral  studies  in  C.  elegans[J].  Applied Animal  Behaviour   Sci-
                                                                    ence, 2023, 266: 106024.
              的数据整合和比较。

                                                              [  6  ]   Lim  L  W  K.  Implementation  of  artificial  intelligence  in
              3.8    跨学科协作与应用推广
                                                                    aquaculture  and  fisheries:  deep  learning,  machine  vision,  big
                   水生动物行为学研究涉及生物学、生态学、                              data, internet of Things, robots and beyond[J]. Journal of Com-
              计算机科学和工程学等多学科,未来需要加强                                  putational and Cognitive Engineering, 2024, 3(2): 112-118.
              跨学科合作,推动研究成果向实际应用转化。                            [  7  ]   Saad Saoud L, Sultan A, Elmezain M, et al. Beyond observa-
              同时,应注重提升公众和管理者对                  AI 技术的认              tion: deep learning for animal behavior and ecological conser-
              识和接受度,促进科技成果服务于水域生态保                                  vation[J]. Ecological Informatics, 2024, 84: 102893.
              护和水产业的可持续发展。                                    [  8  ]   Zhao Y X, Qin H X, Xu L, et al. A review of deep learning-

                                                                    based stereo vision techniques for phenotype feature and beha-
              4    结论
                                                                    vioral analysis of fish in aquaculture[J]. Artificial Intelligence
                   不可否认,AI 正在引领动物行为研究的新                             Review, 2025, 58(1): 7.
              时代,为水生动物行为学研究带来了前所未有                            [  9  ]   Cui M, Liu X B, Liu H H, et al. Fish tracking, counting, and
              的机遇,AI 正将水生动物行为学研究推向“数                                behaviour analysis in digital aquaculture: a comprehensive sur-
              据密集型科学”新范式。自动化图像处理、行为                                 vey[J]. Reviews in Aquaculture, 2025, 17(1): e13001.
              模式识别和实时监控系统正逐步改变传统研究                            [10]   Boudhane M, Nsiri B. Underwater image processing method for
              方式,使得数据采集和分析更高效、准确,从                                  fish  localization  and  detection  in  submarine  environment[J].
              而进一步揭示隐藏的模式,更好地理解复杂的                                  Journal  of  Visual  Communication  and  Image  Representation,
              行为,推动对自然世界的深入了解。尽管面临                                  2016, 39: 226-238.
              数据标准化、模型泛化和跨学科协作等挑战,                            [11]   Spampinato C, Giordano D, Di Salvo R, et al. Automatic fish
              未来随着技术的不断进步与应用推广,AI 将在                                classification  for  underwater  species  behavior  understanding
              水生动物行为学研究中发挥更加重要的作用,                                  [C]//Association for Computing Machinery. Proceedings of the
              助力水域生态保护与水产业的可持续发展。                                   First ACM International Workshop on Analysis and Retrieval
                                                                    of  Tracked  Events  and  Motion  in  Imagery  Streams.  Firenze
              参考文献     (References):                                Italy: Association for Computing Machinery, 2010: 45-50.
              [  1  ]   Tomkiewicz S M, Fuller M R, Kie J G, et al. Global position-  [12]   Zheng T, Wu J F, Kong H, et al. A video object segmentation-
                    ing system and associated technologies in animal behaviour and  based fish individual recognition method for underwater com-
                    ecological research[J]. Philosophical Transactions of the Royal  plex environments[J]. Ecological Informatics, 2024, 82: 102689.

              中国水产学会主办  sponsored by China Society of Fisheries                          https://www.china-fishery.cn
                                                            5
   32   33   34   35   36   37   38   39   40   41   42