Page 38 - 《水产学报》2025年第7期
P. 38

张东,等                                                                  水产学报, 2025, 49(7): 079103

              [13]   Rathi D, Jain S, Indu S. Underwater fish species classification  [25]   Rastegari  H,  Nadi  F,  Lam  S  S,  et  al.  Internet  of  Things  in
                    using   convolutional   neural   network   and   deep  aquaculture: a review of the challenges and potential solutions
                    learning[C]//IEEE.  2017  Ninth  International  Conference  on  based on current and future trends[J]. Smart Agricultural Tech-
                    Advances  in  Pattern  Recognition  (ICAPR).  Bangalore,  India:  nology, 2023, 4: 100187.
                    IEEE, 2017: 1-6.                          [26]   Huang  Y  P,  Khabusi  S  P.  Artificial  intelligence  of  things
              [14]   Han F F, Zhu J C, Liu B, et al. Fish shoals behavior detection  (AIoT) advances in aquaculture: a review[J]. Processes, 2025,
                    based  on  convolutional  neural  network  and  spatiotemporal  13(1): 73.
                    information[J]. IEEE Access, 2020, 8: 126907-126926.  [27]   O’Donncha F, Stockwell C L, Planellas S R, et al. Data driven
              [15]   Iqbal M A, Wang Z J, Ali Z A, et al. Automatic fish species  insight into fish behaviour and their use for precision aquacul-
                    classification  using  deep  convolutional  neural  networks[J].  ture[J]. Frontiers in Animal Science, 2021, 2: 695054.
                    Wireless Personal Communications, 2021, 116(2): 1043-1053.  [28]   Hu J, Zhao D D, Zhang Y F, et al. Real-time nondestructive fish
              [16]   Ubina N, Cheng S C, Chang C C, et al. Evaluating fish feeding  behavior  detecting  in  mixed  polyculture  system  using  deep-
                    intensity in aquaculture with convolutional neural networks[J].  learning and low-cost devices[J]. Expert Systems with Applica-
                    Aquacultural Engineering, 2021, 94: 102178.     tions, 2021, 178: 115051.
              [17]   Huang J Z, Yu X N, Chen X W J, et al. Recognizing fish beha-  [29]   Kadota M, Torisawa S, Takagi T. Quantitative assessment and
                    vior  in  aquaculture  with  graph  convolutional  network[J].  analysis  of  fish  behavior  in  closed  systems  using  information
                    Aquacultural Engineering, 2022, 98: 102246.     entropy[J]. Fishes, 2024, 9(6): 224.
              [18]   Iqbal U, Li D L, Akhter M. Intelligent diagnosis of fish beha-  [30]   Aung  T,  Abdul  Razak  R,  Rahiman  Bin  Md  Nor  A.  Artificial
                    vior using deep learning method[J]. Fishes, 2022, 7(4): 201.  intelligence methods used in various aquaculture applications: a
              [19]   Zhao J, Bao W J, Zhang F D, et al. Modified motion influence  systematic literature review[J]. Journal of the World Aquacul-
                    map and recurrent neural network-based monitoring of the local  ture Society, 2025, 56(1): e13107.
                    unusual  behaviors  for  fish  school  in  intensive  aquaculture[J].  [31]   Martinez-Alpiste  I,  De  Tailly  J  B,  Alcaraz-Calero  J  M,  et  al.
                    Aquaculture, 2018, 493: 165-175.                Machine learning-based understanding of aquatic animal beha-
              [20]   彭秋珺, 李蔚然, 李振波. 基于人工智能的鱼类行为识别研究                 viour in high-turbidity waters[J]. Expert Systems With Applica-
                    综述  [J]. 农业机械学报, 2023, 54(S1): 283-295.         tions, 2024, 255: 124804.
                    Peng Q J, Li W R, Li Z B. Review of fish behavior recognition  [32]   Wang  H,  Zhang  S,  Zhao  S  L,  et  al.  Real-time  detection  and
                    methods based on artificial intelligence[J]. Transactions of the  tracking  of  fish  abnormal  behavior  based  on  improved
                    Chinese Society for Agricultural Machinery, 2023, 54(S1): 283-  YOLOV5  and  SiamRPN++[J].  Computers  and  Electronics  in
                    295 (in Chinese).                               Agriculture, 2022, 192: 106512.
              [21]   Wang G X, Muhammad A, Liu C, et al. Automatic recognition  [33]   Li  X,  Hao  Y  F,  Zhang  P,  et  al.  A  novel  automatic  detection
                    of  fish  behavior  with  a  fusion  of  RGB  and  optical  flow  data  method  for  abnormal  behavior  of  single  fish  using  image
                    based on deep learning[J]. Animals, 2021, 11(10): 2774.  fusion[J]. Computers and Electronics in Agriculture, 2022, 203:
              [22]   Yang  Y  X,  Yu  H,  Zhang  X,  et  al.  Fish  behavior  recognition  107435.
                    based  on  an  audio-visual multimodal  interactive  fusion   net-  [34]   Li D L, Wang G X, Du L, et al. Recent advances in intelligent
                    work[J]. Aquacultural Engineering, 2024, 107: 102471.  recognition  methods  for  fish  stress  behavior[J].  Aquacultural
              [23]   Huang W T, Wang Y P, He W H, et al. RTI-net: a decision sup-  Engineering, 2022, 96: 102222.
                    port system for fish stress classification using multimodal learn-  [35]   Li Y J, Hu Z Y, Zhang Y X, et al. DDEYOLOv9: network for
                    ing network[J]. Expert Systems with Applications, 2025, 276:  detecting  and  counting  abnormal  fish  behaviors  in  complex
                    127174.                                         water environments[J]. Fishes, 2024, 9(6): 242.
              [24]   Gu X Y, Zhao S L, Duan Y Q, et al. MMFINet: a multimodal  [36]   Atoum Y, Srivastava S, Liu X M. Automatic feeding control for
                    fusion network for accurate fish feeding intensity assessment in  dense aquaculture fish tanks[J]. IEEE Signal Processing Letters,
                    recirculating  aquaculture  systems[J].  Computers and   Electron-  2015, 22(8): 1089-1093.
                    ics in Agriculture, 2025, 232: 110138.    [37]   Adegboye  M  A,  Aibinu  A  M,  Kolo  J  G,  et  al.  Incorporating

              https://www.china-fishery.cn                           中国水产学会主办    sponsored by China Society of Fisheries
                                                            6
   33   34   35   36   37   38   39   40   41   42   43