Page 216 - 《水产学报》2023年第1期
P. 216

王禹莎,等                                                                 水产学报, 2023, 47(1): 019516

                   on  Computer  Vision.  Venice,  Italy:  IEEE,  2017:  2980-  towards real-time object detection with region proposal
                   2988.                                            networks[J]. IEEE Transactions on Pattern Analysis and
              [22]  Brosnan  T,  Sun  D  W.  Improving  quality  inspection  of  Machine Intelligence, 2017, 39(6): 1137-1149.
                   food  products  by  computer  vision –a  review[J].  Journal  [33]  Hsieh C L, Chang H Y, Chen F H, et al. A simple and
                   of Food Engineering, 2004, 61(1): 3-16.          effective  digital  imaging  approach  for  tuna  fish  length
              [23]  Blonk R J W, Komen J, Tenghe A, et al. Heritability of  measurement  compatible  with  fishing  operations[J].
                   shape  in  common  sole,  Solea  solea,  estimated  from  Computers and Electronics in Agriculture, 2011, 75(1):
                   image analysis data[J]. Aquaculture, 2010, 307(1-2): 6-  44-51.
                   11.                                        [34]  Monkman  G  G,  Hyder  K,  Kaiser  M  J,  et  al.  Using
              [24]  Gjedrem  T.  Flesh  quality  improvement  in  fish  through  machine vision to estimate fish length from images using
                   breeding[J]. Aquaculture International, 1997, 5(3): 197-  regional  convolutional  neural  networks[J].  Methods  in
                   206.                                             Ecology and Evolution, 2019, 10(12): 2045-2056.
              [25]  Navarro A, Zamorano M J, Hildebrandt S, et al. Estim-  [35]  Muñoz-Benavent  P,  Andreu-García  G,  Valiente-
                   ates  of  heritabilities  and  genetic  correlations  for  body  González J M, et al. Enhanced fish bending model for
                   composition  traits  and  G  ×  E  interactions,  in  gilthead  automatic  tuna  sizing  using  computer  vision[J].  Com-
                   seabream  (Sparus  auratus  L.  )[J].  Aquaculture,  2009,  puters and Electronics in Agriculture, 2018, 150: 52-61.
                   295(3-4): 183-187.                         [36]  房舒. 基于深度学习的鱼类表型数据测量方法研究
              [26]  Tang  Q,  Qiu  W,  Zhou  Y  C.  Classification  of  complex  [D]. 杭州: 浙江大学, 2021.
                   power quality disturbances using optimized S-transform  Fang S. Research on fish phenotypic data measurement
                   and  kernel  SVM[J].  IEEE  Transactions  on  Industrial  method based on deep learning[D]. Hangzhou: Zhejiang
                   Electronics, 2020, 67(11): 9715-9723.            University, 2021 (in Chinese).
              [27]  Zhou C, Zhang B H, Lin K, et al. Near-infrared imaging  [37]  黄康为. 基于机器视觉的水下动态鱼体尺寸测量方法
                   to quantify the feeding behavior of fish in aquaculture[J].  研究与实现  [D]. 杭州: 浙江大学, 2021.
                   Computers  and  Electronics  in  Agriculture,  2017,  135:  Huang K W. Research and implement of machine vision
                   233-241.                                         based  underwater  dynamic  fish  size  measurement
              [28]  Jia B B, Zhang M L. Multi-dimensional classification via  method[D].  Hangzhou:  Zhejiang  University,  2021  (in
                   kNN feature augmentation[J]. Pattern Recognition, 2020,  Chinese).
                   106: 107423.                               [38]  Haffray P, Bugeon J, Rivard Q, et al. Genetic paramet-
              [29]  Tharwat A, Hemedan A A, Hassanien A E, et al. A bio-  ers of in-vivo prediction of carcass, head and fillet yields
                   metric-based  model  for  fish  species  classification[J].  by internal ultrasound and 2D external imagery in large
                   Fisheries Research, 2018, 204: 324-336.          rainbow  trout  (Oncorhynchus  mykiss)[J].  Aquaculture,
              [30]  Cai  K  W,  Miao  X  Y,  Wang  W,  et  al.  A  modified  2013, 410-411: 236-244.
                   YOLOv3 model for fish detection based on MobileNetv1  [39]  Kause A, Paananen T, Ritola O, et al. Direct and indir-
                   as  backbone[J].  Aquacultural  Engineering,  2020,  91:  ect  selection  of  visceral  lipid  weight,  fillet  weight,  and
                   102117.                                          fillet percentage in a rainbow trout breeding program[J].
              [31]  Prasetyo  E,  Suciati  N,  Fatichah  C.  A  comparison  of  Journal of Animal Science, 2007, 85(12): 3218-3227.
                   YOLO and mask R-CNN for segmenting head and tail of  [40]  Navarro A, Zamorano M J, Hildebrandt S, et al. Estim-
                   fish[C]//Proceedings of the 2020 4th International Con-  ates of heritabilities and genetic correlations for growth
                   ference on Informatics and Computational Sciences (ICI-  and carcass traits in gilthead seabream (Sparus auratus
                   CoS). Semarang, Indonesia: IEEE, 2020: 1-6.      L.  ),  under  industrial  conditions[J].  Aquaculture,  2009,
              [32]  Ren  S,  He  K,  Girshick  R  B,  et  al.  Faster  R-CNN:  289(3-4): 225-230.





              中国水产学会主办  sponsored by China Society of Fisheries                          https://www.china-fishery.cn
                                                            9
   211   212   213   214   215   216   217   218   219   220   221