Page 215 - 《水产学报》2023年第1期
P. 215
王禹莎,等 水产学报, 2023, 47(1): 019516
中国水产学会. 2021 中国渔业统计年鉴 [M]. 北京: 中 [11] Xiong J B, Yu D Z, Liu S Y, et al. A review of plant
国农业出版社, 2021: 21-26. phenotypic image recognition technology based on deep
Bureau of Fishery Administration of the Ministry of learning[J]. Electronics, 2021, 10(1): 81.
Agriculture and Rural Affairs, National Fisheries Tech- [12] Strachan N J C. Length measurement of fish by com-
nology Extension Center, China Society of Fisheries. puter vision[J]. Computers and Electronics in Agricul-
China fishery statistical yearbook 2021[M]. Beijing: ture, 1993, 8(2): 93-104.
China Agriculture Press, 2021: 21-26 (in Chinese). [13] Abdullah N, Shafry M, Rahim M S M, et al. Measuring
[ 2 ] Palaiokostas C. Predicting for disease resistance in fish length from digital images (FiLeDI)[C]//Proceed-
aquaculture species using machine learning models[J]. ings of the 2nd International Conference on Interaction
Aquaculture Reports, 2021, 20: 100660. Sciences: Information Technology, Culture and Human.
[ 3 ] Zhao S L, Zhang S, Liu J C, et al. Application of Seoul, Korea: ACM, 2009: 38-43.
machine learning in intelligent fish aquaculture: a [14] 杨杰超, 许江淳, 陆万荣, 等. 基于计算机视觉的大黄
review[J]. Aquaculture, 2021, 540: 736724. 鱼体尺测算与体质量估测[J]. 中国农机化学报, 2018,
[ 4 ] Zhou C, Xu D M, Chen L, et al. Evaluation of fish feed- 39(6): 66-70.
ing intensity in aquaculture using a convolutional neural Yang J C, Xu J C, Lu W R, et al. Computer vision-based
network and machine vision[J]. Aquaculture, 2019, 507: body size measurement and weight estimation of large
457-465. yellow croaker[J]. Journal of Chinese Agricultural
[ 5 ] Beucher A, Møller A B, Greve M H. Artificial neural Mechanization, 2018, 39(6): 66-70 (in Chinese).
networks and decision tree classification for predicting [15] Chen G, Sun P, Shang Y. Automatic fish classification
soil drainage classes in Denmark[J]. Geoderma, 2019, system using deep learning[C]//Proceedings of the 2017
352: 351-359. IEEE 29th International Conference on Tools with Arti-
[ 6 ] Schauland S, Kummert A, Park S B, et al. Vision-based ficial Intelligence (ICTAI). Boston, USA: IEEE, 2017:
pedestrian detection - improvement and verification of 24-29.
feature extraction methods and SVM-based classifica- [16] Meng L, Hirayama T, Oyanagi S. Underwater-drone
tion[C]//Proceedings of the IEEE Intelligent Transporta- with panoramic camera for automatic fish recognition
tion Systems Conference. Toronto, Canada: IEEE, 2006: based on deep learning[J]. IEEE Access, 2018, 6: 17880-
97-102. 17886.
[ 7 ] 谢素仪. 宠物猫脸检测的方法研究 [D]. 上海: 上海交 [17] Villon S, Mouillot D, Chaumont M, et al. A Deep learn-
通大学, 2010. ing method for accurate and fast identification of coral
Xie S Y. Research on pet-cat face detection reef fishes in underwater images[J]. Ecological Informat-
algorithm[D]. Shanghai: Shanghai Jiao Tong University, ics, 2018, 48: 238-244.
2010 (in Chinese). [18] 龚瑞. 基于计算机视觉的鱼虾识别和形态参数测量
[ 8 ] Déniz O, Bueno G, Salido J, et al. Face recognition [D]. 厦门: 厦门大学, 2018.
using Histograms of Oriented Gradients[J]. Pattern Gong R. Fish recognition and morphological parameters
Recognition Letters, 2011, 32(12): 1598-1603. measurement of prawn based on computer vision[D].
[ 9 ] Srikantaswamy R, Samuel R D S. A novel face segment- Xiamen: Xiamen University, 2018 (in Chinese).
ation algorithm from a video sequence for real-time face [19] Bidder G P. Constant differential growth-ratios and their
recognition[J]. EURASIP Journal on Advances in Sig- significance[J]. Nature, 1925, 115(2883): 155-156.
nal Processing, 2007: 051648. [20] Balaban M O, Ünal Şengör G F, Soriano M G, et al.
[10] Giménez-gallego J, González-teruel J D, Jiménez- Using image analysis to predict the weight of alaskan
buendía M, et al. Segmentation of multiple tree leaves salmon of different species[J]. Journal of Food Science,
pictures with natural backgrounds using deep learning 2010, 75(3): E157-E162.
for image-based agriculture applications[J]. Applied Sci- [21] He K M, Gkioxari G, Dollár P, et al. Mask R-
ences, 2019, 10(1): 202. CNN[C]//Proceedings of IEEE International Conference
https://www.china-fishery.cn 中国水产学会主办 sponsored by China Society of Fisheries
8