Page 215 - 《水产学报》2023年第1期
P. 215

王禹莎,等                                                                 水产学报, 2023, 47(1): 019516

                   中国水产学会. 2021   中国渔业统计年鉴       [M]. 北京: 中   [11]  Xiong J B, Yu D Z, Liu S Y, et al. A review of plant
                   国农业出版社, 2021: 21-26.                             phenotypic image recognition technology based on deep
                   Bureau  of  Fishery  Administration  of  the  Ministry  of  learning[J]. Electronics, 2021, 10(1): 81.
                   Agriculture and Rural Affairs, National Fisheries Tech-  [12]  Strachan  N  J  C.  Length measurement  of  fish  by   com-
                   nology  Extension  Center,  China  Society  of  Fisheries.  puter  vision[J].  Computers and  Electronics  in   Agricul-
                   China  fishery  statistical  yearbook  2021[M].  Beijing:  ture, 1993, 8(2): 93-104.
                   China Agriculture Press, 2021: 21-26 (in Chinese).  [13]  Abdullah N, Shafry M, Rahim M S M, et al. Measuring
              [  2  ]  Palaiokostas  C.  Predicting  for  disease  resistance  in  fish  length  from  digital  images  (FiLeDI)[C]//Proceed-
                   aquaculture  species  using  machine  learning  models[J].  ings of the 2nd International Conference on Interaction
                   Aquaculture Reports, 2021, 20: 100660.           Sciences: Information Technology, Culture and Human.
              [  3  ]  Zhao  S  L,  Zhang  S,  Liu  J  C,  et  al.  Application  of  Seoul, Korea: ACM, 2009: 38-43.
                   machine  learning  in  intelligent  fish  aquaculture:  a  [14]  杨杰超, 许江淳, 陆万荣, 等. 基于计算机视觉的大黄
                   review[J]. Aquaculture, 2021, 540: 736724.       鱼体尺测算与体质量估测[J]. 中国农机化学报, 2018,
              [  4  ]  Zhou C, Xu D M, Chen L, et al. Evaluation of fish feed-  39(6): 66-70.
                   ing intensity in aquaculture using a convolutional neural  Yang J C, Xu J C, Lu W R, et al. Computer vision-based
                   network and machine vision[J]. Aquaculture, 2019, 507:  body  size  measurement  and  weight  estimation  of  large
                   457-465.                                         yellow  croaker[J].  Journal  of  Chinese  Agricultural
              [  5  ]  Beucher  A,  Møller  A  B,  Greve  M  H.  Artificial  neural  Mechanization, 2018, 39(6): 66-70 (in Chinese).
                   networks  and  decision  tree  classification  for  predicting  [15]  Chen G, Sun P, Shang Y. Automatic fish classification
                   soil  drainage  classes  in  Denmark[J].  Geoderma,  2019,  system using deep learning[C]//Proceedings of the 2017
                   352: 351-359.                                    IEEE 29th International Conference on Tools with Arti-
              [  6  ]  Schauland S, Kummert A, Park S B, et al. Vision-based  ficial  Intelligence  (ICTAI).  Boston,  USA:  IEEE,  2017:
                   pedestrian  detection  -  improvement  and  verification  of  24-29.
                   feature extraction  methods  and  SVM-based   classifica-  [16]  Meng  L,  Hirayama  T,  Oyanagi  S.  Underwater-drone
                   tion[C]//Proceedings of the IEEE Intelligent Transporta-  with  panoramic  camera  for  automatic  fish  recognition
                   tion Systems Conference. Toronto, Canada: IEEE, 2006:  based on deep learning[J]. IEEE Access, 2018, 6: 17880-
                   97-102.                                          17886.
              [  7  ]  谢素仪. 宠物猫脸检测的方法研究      [D]. 上海: 上海交     [17]  Villon S, Mouillot D, Chaumont M, et al. A Deep learn-
                   通大学, 2010.                                       ing method for accurate and fast identification of coral
                   Xie  S  Y.  Research  on  pet-cat  face  detection  reef fishes in underwater images[J]. Ecological Informat-
                   algorithm[D]. Shanghai: Shanghai Jiao Tong University,  ics, 2018, 48: 238-244.
                   2010 (in Chinese).                         [18]  龚瑞. 基于计算机视觉的鱼虾识别和形态参数测量
              [  8  ]  Déniz  O,  Bueno  G,  Salido  J,  et  al.  Face  recognition  [D]. 厦门: 厦门大学, 2018.
                   using  Histograms  of  Oriented  Gradients[J].  Pattern  Gong R. Fish recognition and morphological parameters
                   Recognition Letters, 2011, 32(12): 1598-1603.    measurement  of  prawn  based  on  computer  vision[D].
              [  9  ]  Srikantaswamy R, Samuel R D S. A novel face segment-  Xiamen: Xiamen University, 2018 (in Chinese).
                   ation algorithm from a video sequence for real-time face  [19]  Bidder G P. Constant differential growth-ratios and their
                   recognition[J].  EURASIP Journal  on  Advances  in   Sig-  significance[J]. Nature, 1925, 115(2883): 155-156.
                   nal Processing, 2007: 051648.              [20]  Balaban  M  O,  Ünal  Şengör  G  F,  Soriano  M  G,  et  al.
              [10]  Giménez-gallego  J,  González-teruel  J  D,  Jiménez-  Using  image  analysis  to  predict  the  weight  of  alaskan
                   buendía  M,  et  al.  Segmentation  of  multiple  tree  leaves  salmon of different species[J]. Journal of Food Science,
                   pictures  with  natural  backgrounds  using  deep  learning  2010, 75(3): E157-E162.
                   for image-based agriculture applications[J]. Applied Sci-  [21]  He  K  M,  Gkioxari  G,  Dollár  P,  et  al.  Mask  R-
                   ences, 2019, 10(1): 202.                         CNN[C]//Proceedings of IEEE International Conference
              https://www.china-fishery.cn                           中国水产学会主办    sponsored by China Society of Fisheries
                                                            8
   210   211   212   213   214   215   216   217   218   219   220