Page 371 - 《软件学报》2025年第12期
P. 371

5752                                                      软件学报  2025  年第  36  卷第  12  期


                                               表 12    不同方法的计算复杂度      (续)

                         方法              参数量 (G)         FLOPs (M)        训练时间 (s)         测试时间 (s)
                        OGMM               10.09            4.58            0.052 5          0.027 6
                         RGM               51.83           24.46            0.102 1          0.043 2
                     GeoTransformer         -               4.49            0.069 4          0.032 8
                         IFNet             32.63            5.50            0.096 9          0.065 5
                       GNN-GSSC            53.98           19.20            0.103 8          0.044 8
                       本文方法                26.22           13.21            0.109 8          0.037 1

                  3   总 结

                    本文提出了一种局部-全局动态图学习与互补融合的点云配准方法, 通过结合动态偏移的局部图学习、动态
                 关注的全局图学习和注意力驱动的互补融合模块, 有效地提升了点云配准的精度. 在特征提取阶段, 根据动态偏移
                 得到的代理点来学习特征空间的图结构, 获得了更具判别性和细节增强的局部特征表示. 同时, 利用特征学习的自
                 适应阈值动态地构建全局图, 进一步实现了点之间的长程依赖关系. 在特征匹配阶段, 注意力驱动的互补融合模块
                 通过交叉注意力机制提取相似和差异信息, 并采用自注意力机制进一步优化了特征的关联性. 实验结果表明, 本文
                 方法取得了最优的配准效果, 同时保持了较高的计算效率. 在未来的研究中, 可以针对不同场景进一步优化算法,
                 以提高其在复杂环境中的鲁棒性, 特别是对高噪声与部分遮挡点云的处理.

                 References:
                  [1]   Dang Z, Wang LZ, Guo Y, Salzmann M. Match normalization: Learning-based point cloud registration for 6D object pose estimation in
                     the real world. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2024, 46(6): 4489–4503. [doi: 10.1109/TPAMI.2024.3355198]
                  [2]   Jiang  HB,  Salzmann  M,  Dang  Z,  Xie  J,  Yang  J.  SE(3)  diffusion  model-based  point  cloud  registration  for  robust  6D  object  pose
                     estimation.  In:  Proc.  of  the  37th  Int’l  Conf.  on  Neural  Information  Processing  Systems.  New  Orleans:  Curran  Associates  Inc.,  2023.
                     21285–21297.
                  [3]   Shi  CH,  Chen  XYL,  Lu  HM,  Deng  WB,  Xiao  JH,  Dai  B.  RDMNet:  Reliable  dense  matching  based  point  cloud  registration  for
                     autonomous driving. IEEE Trans. on Intelligent Transportation Systems, 2023, 24(10): 11372–11383. [doi: 10.1109/TITS.2023.3286464]
                  [4]   Zhou XY, Lin ZW, Shan XJ, Wang YT, Sun DQ, Yang MH. DrivingGaussian: Composite Gaussian splatting for surrounding dynamic
                     autonomous driving scenes. In: Proc. of the 2024 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Seattle: IEEE, 2024.
                     21634–21643. [doi: 10.1109/CVPR52733.2024.02044]
                  [5]   Li  GF,  Fan  HW,  Jiang  GZ,  Jiang  D,  Liu  YT,  Tao  B,  Yun  JT.  RGBD-SLAM  based  on  object  detection  with  two-stream  YOLOv4-
                     MobileNetv3 in autonomous driving. IEEE Trans. on Intelligent Transportation Systems, 2024, 25(3): 2847–2857. [doi: 10.1109/TITS.
                     2023.3284228]
                  [6]   Wang YN, Tian YB, Chen JW, Xu K, Ding XL. A survey of visual SLAM in dynamic environment: The evolution from geometric to
                     semantic approaches. IEEE Trans. on Instrumentation and Measurement, 2024, 73: 2523221. [doi: 10.1109/TIM.2024.3420374]
                  [7]   Besl PJ, McKay ND. A method for registration of 3-D shapes. IEEE Trans. on Pattern Analysis & Machine Intelligence, 1992, 14(2):
                     239–256. [doi: 10.1109/34.121791]
                  [8]   Segal A, Haehnel D, Thrun S. Generalized-ICP. In: Proc. of Robotics: Science and Systems. 2009. [doi: 10.15607/RSS.2009.V.021]
                  [9]   Yang JL, Li HD, Jia YD. Go-ICP: Solving 3D registration efficiently and globally optimally. In: Proc. of the 2013 IEEE Int’l Conf. on
                     Computer Vision. Sydney: IEEE, 2013. 1457–1464. [doi: 10.1109/ICCV.2013.184]
                 [10]   Magnusson M, Lilienthal A, Duckett T. Scan registration for autonomous mining vehicles using 3D-NDT. Journal of Field Robotics,
                     2007, 24(10): 803–827. [doi: 10.1002/rob.20204]
                 [11]   Aiger D, Mitra NJ, Cohen-Or D. 4-points congruent sets for robust pairwise surface registration. ACM Trans. on Graphics, 2008, 27(3):
                     1–10. [doi: 10.1145/1360612.1360684]
                 [12]   Aoki Y, Goforth H, Srivatsan RA, Lucey S. PointNetLK: Robust & efficient point cloud registration using PointNet. In: Proc. of the 2019
                     IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019. 7156–7165. [doi: 10.1109/CVPR.2019.00733]
                 [13]   Qi CR, Su H, Mo KC, Guibas LJ. PointNet: Deep learning on point sets for 3D classification and segmentation. In: Proc. of the 2017
                     IEEE Conf. on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. 652–660. [doi: 10.1109/CVPR.2017.16]
   366   367   368   369   370   371   372   373   374   375   376