Page 373 - 《软件学报》2025年第12期
P. 373

5754                                                      软件学报  2025  年第  36  卷第  12  期


                 [36]   Fung S, Pan W, Liu X, Yearwood J, Dazeley R, Lu XQ. TopFormer: Topology-aware Transformer for point cloud registration. In: Proc.
                     of the 12th Int’l Conf. on Computational Visual Media. Wellington: Springer, 2024. 112–128. [doi: 10.1007/978-981-97-2095-8_7]
                 [37]   Yu H, Hou J, Qin Z, Saleh M, Shugurov I, Wang K, Busam B, Ilic S. RIGA: Rotation-invariant and globally-aware descriptors for point
                     cloud  registration.  IEEE  Trans.  on  Pattern  Analysis  and  Machine  Intelligence,  2024,  46(5):  3796–3812.  [doi:  10.1109/TPAMI.2023.
                     3349199]
                 [38]   Li JW, Zhan JW. Review on 3D point cloud registration method. Journal of Image and Graphics, 2022, 27(2): 349–367 (in Chinese with
                     English abstract). [doi: 10.11834/jig.210243]
                 [39]   Wang Y, Sun YB, Liu ZW, Sarma SE, Bronstein MM, Solomon JM. Dynamic graph CNN for learning on point clouds. ACM Trans. on
                     Graphics, 2019, 38(5): 146. [doi: 10.1145/3326362]
                 [40]   Wu ZR, Song SR, Khosla A, Yu F, Zhang LG, Tang XO, Xiao JX. 3D ShapeNets: A deep representation for volumetric shapes. In: Proc.
                     of  the  2015  IEEE  Conf.  on  Computer  Vision  and  Pattern  Recognition.  Boston:  IEEE,  2015.  1912–1920.  [doi:  10.1109/CVPR.2015.
                     7298801]
                 [41]   Yi L, Kim VG, Ceylan D, Shen IC, Yan MY, Su H, Lu CW, Huang QX, Sheffer A, Guibas L. A scalable active framework for region
                     annotation in 3D shape collections. ACM Trans. on Graphics, 2016, 35(6): 210. [doi: 10.1145/2980179.2980238]
                 [42]   Bogo F, Romero J, Loper M, Black MJ. FAUST: Dataset and evaluation for 3D mesh registration. In: Proc. of the 2014 IEEE Conf. on
                     Computer Vision and Pattern Recognition. Columbus: IEEE, 2014. 3794–3801. [doi: 10.1109/CVPR.2014.491]
                 [43]   Hezroni I, Drory A, Giryes R, Avidan S. DeepBBS: Deep best buddies for point cloud registration. In: Proc. of the 2021 Int’l Conf. on 3D
                     Vision. London: IEEE, 2021. 342–351. [doi: 10.1109/3DV53792.2021.00044]
                 [44]   Cao FL, Wang LP, Ye HL. SharpGConv: A novel graph method with plug-and-play sharpening convolution for point cloud registration.
                     IEEE Trans. on Circuits and Systems for Video Technology, 2024, 34(8): 7095–7105. [doi: 10.1109/TCSVT.2024.3369468]

                 附中文参考文献:
                 [38]   李建微, 占家旺. 三维点云配准方法研究进展. 中国图象图形学报, 2022, 27(2): 349–367. [doi: 10.11834/jig.210243]


                             邱巧燕(1999-), 女, 硕士生, 主要研究领域为深                 曹飞龙(1965-), 男, 博士, 教授, 博士生导师, 主
                            度学习, 点云分析.                                   要研究领域为深度学习, 点云分析.




                             叶海良(1990-), 男, 博士, 副教授, CCF  专业会             吕科(1971-), 男, 博士, 教授, 博士生导师, CCF
                            员, 主要研究领域为深度学习, 点云分析.                        专业会员, 主要研究领域为计算机视觉, 计算机
                                                                         图形学.
   368   369   370   371   372   373   374   375   376   377   378