Page 372 - 《软件学报》2025年第12期
P. 372

邱巧燕 等: 局部-全局动态图学习与互补融合的点云配准方法                                                   5753


                 [14]   Xu H, Liu SC, Wang GF, Liu GH, Zeng B. OMNet: Learning overlapping mask for partial-to-partial point cloud registration. In: Proc. of
                     the 2021 IEEE/CVF Int’l Conf. on Computer Vision. Montreal: IEEE, 2021. 3112–3121. [doi: 10.1109/ICCV48922.2021.00312]
                 [15]   Lu WX, Wan GW, Zhou Y, Fu XY, Yuan PF, Song SY. DeepVCP: An end-to-end deep neural network for point cloud registration. In:
                     Proc. of the 2019 IEEE/CVF Int’l Conf. on Computer Vision. Seoul: IEEE, 2019. 12–21. [doi: 10.1109/ICCV.2019.00010]
                 [16]   Qi CR, Yi L, Su H, Guibas LJ. PointNet++: Deep hierarchical feature learning on point sets in a metric space. In: Proc. of the 31st Int’l
                     Conf. on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 2017. 5105–5114.
                 [17]   Yew ZJ, Lee GH. RPM-Net: Robust point matching using learned features. In: Proc. of the 2020 IEEE/CVF Conf. on Computer Vision
                     and Pattern Recognition. Seattle: IEEE, 2020. 11821–11830. [doi: 10.1109/CVPR42600.2020.01184]
                 [18]   Li  JH,  Zhang  CH,  Xu  ZY,  Zhou  HN,  Zhang  C.  Iterative  distance-aware  similarity  matrix  convolution  with  mutual-supervised  point
                     elimination for efficient point cloud registration. In: Proc. of the 16th European Conf. on Computer Vision. Glasgow: Springer, 2020.
                     378–394. [doi: 10.1007/978-3-030-58586-0_23]
                 [19]   Mei  Q,  Wang  FX,  Tong  C,  Zhang  JQ,  Jiang  B,  Xiao  J.  PACNet:  A  high-precision  point  cloud  registration  network  based  on  deep
                     learning. In: Proc. of the 13th Int’l Conf. on Wireless Communications and Signal Processing. Changsha: IEEE, 2021. 1–5. [doi: 10.1109/
                     WCSP52459.2021.9613579]
                 [20]   Qin  Z,  Yu  H,  Wang  CJ,  Guo  YL,  Peng  YX,  Ilic  S,  Hu  DW,  Xu  K.  GeoTransformer:  Fast  and  robust  point  cloud  registration  with
                     geometric Transformer. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2023, 45(8): 9806–9821. [doi: 10.1109/TPAMI.2023.
                     3259038]
                 [21]   Slimani  K,  Achard  C,  Tamadazte  B.  RoCNet++:  Triangle-based  descriptor  for  accurate  and  robust  point  cloud  registration.  Pattern
                     Recognition, 2024, 147: 110108. [doi: 10.1016/j.patcog.2023.110108]
                 [22]   Xie YF, Wang BY, Li SQ, Zhu JH. Iterative feedback network for unsupervised point cloud registration. IEEE Robotics and Automation
                     Letters, 2024, 9(3): 2327–2334. [doi: 10.1109/LRA.2024.3355784]
                 [23]   Wang Y, Solomon J. Deep closest point: Learning representations for point cloud registration. In: Proc. of the 2019 IEEE/CVF Int’l Conf.
                     on Computer Vision. Seoul: IEEE, 2019. 3522–3531. [doi: 10.1109/ICCV.2019.00362]
                 [24]   Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. Attention is all you need. In: Proc. of the
                     31st Int’l Conf. on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 2017. 6000–6010.
                 [25]   Huang SY, Gojcic Z, Usvyatsov M, Wieser A, Schindler K. PREDATOR: Registration of 3D point clouds with low overlap. In: Proc. of
                     the 2021 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021. 4265–4274. [doi: 10.1109/CVPR46437.
                     2021.00425]
                 [26]   Fischer K, Simon M, Ölsner F, Milz S, Groβ HM, Mäder P. StickyPillars: Robust and efficient feature matching on point clouds using
                     graph neural networks. In: Proc. of the 2021 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021.
                     313–323. [doi: 10.1109/CVPR46437.2021.00038]
                 [27]   Shi CH, Chen XYL, Huang KH, Xiao JH, Lu HM, Stachniss C. Keypoint matching for point cloud registration using multiplex dynamic
                     graph attention networks. IEEE Robotics and Automation Letters, 2021, 6(4): 8221–8228. [doi: 10.1109/LRA.2021.3097275]
                 [28]   Kadam P, Zhang M, Liu S, Kuo CCJ. R-PointHop: A green, accurate, and unsupervised point cloud registration method. IEEE Trans. on
                     Image Processing, 2022, 31: 2710–2725. [doi: 10.1109/TIP.2022.3160609]
                 [29]   Chen GY, Wang ML, Zhang QX, Yuan L, Yue YF. Full Transformer framework for robust point cloud registration with deep information
                     interaction. IEEE Trans. on Neural Networks and Learning Systems, 2024, 35(10): 13368–13382. [doi: 10.1109/TNNLS.2023.3267333]
                 [30]   Jiang YN, Zhou BT, Liu XY, Li QY, Cheng C. GTINet: Global topology-aware interactions for unsupervised point cloud registration.
                     IEEE Trans. on Circuits and Systems for Video Technology, 2024, 34(7): 6363–6375. [doi: 10.1109/TCSVT.2024.3367529]
                 [31]   Wu BL, Ma J, Chen GJ, An P. Feature interactive representation for point cloud registration. In: Proc. of the 2021 IEEE/CVF Int’l Conf.
                     on Computer Vision. Montreal: IEEE, 2021. 5510–5519. [doi: 10.1109/ICCV48922.2021.00548]
                 [32]   Xu H, Ye NJ, Liu GH, Zeng B, Liu SC. FINet: Dual branches feature interaction for partial-to-partial point cloud registration. In: Proc. of
                     the 36th AAAI Conf. on Artificial Intelligence. Virtually: AAAI, 2022. 2848–2856. [doi: 10.1609/aaai.v36i3.20189]
                 [33]   Fu KX, Luo JZ, Luo XY, Liu SL, Zhang CX, Wang MN. Robust point cloud registration framework based on deep graph matching. IEEE
                     Trans. on Pattern Analysis and Machine Intelligence, 2023, 45(5): 6183–6195. [doi: 10.1109/TPAMI.2022.3204713]
                 [34]   Yew  ZJ,  Lee  GH.  REGTR:  End-to-end  point  cloud  correspondences  with  Transformers.  In:  Proc.  of  the  2022  IEEE/CVF  Conf.  on
                     Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022. 6667–6676. [doi: 10.1109/CVPR52688.2022.00656]
                 [35]   Mei GF, Poiesi F, Saltori C, Zhang J, Ricci E, Sebe N. Overlap-guided Gaussian mixture models for point cloud registration. In: Proc. of
                     the 2023 IEEE/CVF Winter Conf. on Applications of Computer Vision. Waikoloa: IEEE, 2023. 4500–4509. [doi: 10.1109/WACV56688.
                     2023.00449]
   367   368   369   370   371   372   373   374   375   376   377