Page 353 - 《软件学报》2025年第12期
P. 353
5734 软件学报 2025 年第 36 卷第 12 期
[3] Immorlica N, Jagadeesan M, Lucier B. Clickbait vs. quality: How engagement-based optimization shapes the content landscape in online
platforms. In: Proc. of the 2024 ACM Web Conf. Singapore: ACM, 2024. 36–45. [doi: 10.1145/3589334.3645353]
[4] Agarwal B, Agarwal A, Harjule P, Rahman A. Understanding the intent behind sharing misinformation on social media. Journal of
Experimental & Theoretical Artificial Intelligence, 2023, 35(4): 573–587. [doi: 10.1080/0952813X.2021.1960637]
[5] Zhou XY, Jain A, Phoha VV, Zafarani R. Fake news early detection: A theory-driven model. Digital Threats: Research and Practice,
2020, 1(2): 12. [doi: 10.1145/3377478]
[6] Coste CI, Bufnea D. Advances in clickbait and fake news detection using new language-independent strategies. Journal of
Communications Software and Systems, 2021, 17(3): 270–280. [doi: 10.24138/jcomss-2021-0038]
[7] Ju TJ, Liu GS, Zhang ZS, Zhang R. A review of probe interpretable methods in natural language processing. Chinese Journal of
Computers, 2024, 47(4): 733–758 (in Chinese with English abstract). [doi: 10.11897/SP.J.1016.2024.00733]
[8] Dai SC, Hsu YL, Xiong AP, Ku LW. Ask to know more: Generating counterfactual explanations for fake claims. In: Proc. of the 28th
ACM SIGKDD Conf. on Knowledge Discovery and Data Mining. Washington: ACM, 2022. 2800–2810. [doi: 10.1145/3534678.
3539205]
[9] Fan YF, Zou BW, Xu QT, Li ZF, Hong Y. Survey on commonsense question answering. Ruan Jian Xue Bao/Journal of Software, 2024,
35(1): 236–265 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6913.htm [doi: 10.13328/j.cnki.jos.006913]
[10] Shu K, Zhou XY, Wang SH, Zafarani R, Liu H. The role of user profiles for fake news detection. In: Proc. of the 2019 IEEE/ACM Int’l
Conf. on Advances in Social Networks Analysis and Mining. Vancouver: ACM, 2019. 436–439. [doi: 10.1145/3341161.3342927]
[11] Ma J, Gao W, Wong KF. Detect rumors in microblog posts using propagation structure via kernel learning. In: Proc. of the 55th Annual
Meeting of the Association for Computational Linguistics. Vancouver: ACL, 2017. 708–717. [doi: 10.18653/v1/P17-1066]
[12] Wu Y, Cao MP, Zhang YZ, Jiang Y. Detecting clickbait in Chinese social media by prompt learning. In: Proc. of the 26th Int’l Conf. on
Computer Supported Cooperative Work in Design. Rio de Janeiro: IEEE, 2023. 369–374. [doi: 10.1109/CSCWD57460.2023.10152690]
[13] Popat K. Assessing the credibility of claims on the web. In: Proc. of the 26th Int’l Conf. on World Wide Web Companion. Perth: ACM,
2017. 735–739. [doi: 10.1145/3041021.3053379]
[14] Cheng MX, Nazarian S, Bogdan P. VRoC: Variational autoencoder-aided multi-task rumor classifier based on text. In: Proc. of the 2020
Web Conf. Taipei: ACM, 2020. 2892–2898. [doi: 10.1145/3366423.3380054]
[15] Meng Q, Liu B, Sun XG, Yan H, Liang CY, Cao JX, Lee RKW, Bao X. Attention-fused deep relevancy matching network for clickbait
detection. IEEE Trans. on Computational Social Systems, 2023, 10(6): 3120–3131. [doi: 10.1109/TCSS.2022.3207479]
[16] Yi XY, Zhang JR, Li WH, Wang XT, Xie X. Clickbait detection via contrastive variational modelling of text and label. In: Proc. of the
31st Int’l Joint Conf. on Artificial Intelligence. Vienna, 2022. 4475–4481. [doi: 10.24963/ijcai.2022/621]
[17] Shu K, Cui LM, Wang SH, Lee D, Liu H. dEFEND: Explainable fake news detection. In: Proc. of the 25th ACM SIGKDD Int’l Conf. on
Knowledge Discovery & Data Mining. Anchorage: ACM, 2019. 395–405. [doi: 10.1145/3292500.3330935]
[18] Kumar V, Khattar D, Gairola S, Kumar Lal Y, Varma V. Identifying clickbait: A multi-strategy approach using neural networks. In: Proc.
of the 41st Int’l ACM SIGIR Conf. on Research & Development in Information Retrieval. Ann Arbor: ACM, 2018. 1225–1228. [doi: 10.
1145/3209978.3210144]
[19] Wang SY, Wei ZY, Fan ZH, Huang ZF, Sun WJ, Zhang Q, Huang XJ. PathQG: Neural question generation from facts. In: Proc. of the
2020 Conf. on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2020. 9066–9075. [doi: 10.
18653/v1/2020.emnlp-main.729]
[20] Pan LM, Lu XY, Kan MY, Nakov P. QACheck: A demonstration system for question-guided multi-hop fact-checking. In: Proc. of the
2023 Conf. on Empirical Methods in Natural Language Processing: System Demonstrations. Singapore: Association for Computational
Linguistics, 2023. 264–273. [doi: 10.18653/v1/2023.emnlp-demo.23]
[21] Liao H, Peng JH, Huang ZY, Zhang W, Li GH, Shu K, Xie X. MUSER: A multi-step evidence retrieval enhancement framework for fake
news detection. In: Proc. of the 29th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining. Long Beach: ACM, 2023.
4461–4472. [doi: 10.1145/3580305.3599873]
[22] Thorne J, Vlachos A. Evidence-based factual error correction. In: Proc. of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th Int’l Joint Conf. on Natural Language Processing. ACL, 2021. 3298–3309. [doi: 10.18653/v1/2021.acl-long.256]
[23] Liang YY, Wang JN, Zhu HL, Wang L, Qian WN, Lan YS. Prompting large language models with chain-of-thought for few-shot
knowledge base question generation. In: Proc. of the 2023 Conf. on Empirical Methods in Natural Language Processing. Singapore: ACL,
2023. 4329–4343. [doi: 10.18653/v1/2023.emnlp-main.263]
[24] Mazidi K, Nielsen RD. Linguistic considerations in automatic question generation. In: Proc. of the 52nd Annual Meeting of the
Association for Computational Linguistics. Baltimore: Association for Computational Linguistics, 2014. 321–326. [doi: 10.3115/v1/P14-

