Page 353 - 《软件学报》2025年第12期
P. 353

5734                                                      软件学报  2025  年第  36  卷第  12  期


                  [3]   Immorlica N, Jagadeesan M, Lucier B. Clickbait vs. quality: How engagement-based optimization shapes the content landscape in online
                     platforms. In: Proc. of the 2024 ACM Web Conf. Singapore: ACM, 2024. 36–45. [doi: 10.1145/3589334.3645353]
                  [4]   Agarwal  B,  Agarwal  A,  Harjule  P,  Rahman  A.  Understanding  the  intent  behind  sharing  misinformation  on  social  media.  Journal  of
                     Experimental & Theoretical Artificial Intelligence, 2023, 35(4): 573–587. [doi: 10.1080/0952813X.2021.1960637]
                  [5]   Zhou XY, Jain A, Phoha VV, Zafarani R. Fake news early detection: A theory-driven model. Digital Threats: Research and Practice,
                     2020, 1(2): 12. [doi: 10.1145/3377478]
                  [6]   Coste  CI,  Bufnea  D.  Advances  in  clickbait  and  fake  news  detection  using  new  language-independent  strategies.  Journal  of
                     Communications Software and Systems, 2021, 17(3): 270–280. [doi: 10.24138/jcomss-2021-0038]
                  [7]   Ju  TJ,  Liu  GS,  Zhang  ZS,  Zhang  R.  A  review  of  probe  interpretable  methods  in  natural  language  processing.  Chinese  Journal  of
                     Computers, 2024, 47(4): 733–758 (in Chinese with English abstract). [doi: 10.11897/SP.J.1016.2024.00733]
                  [8]   Dai SC, Hsu YL, Xiong AP, Ku LW. Ask to know more: Generating counterfactual explanations for fake claims. In: Proc. of the 28th
                     ACM  SIGKDD  Conf.  on  Knowledge  Discovery  and  Data  Mining.  Washington:  ACM,  2022.  2800–2810.  [doi:  10.1145/3534678.
                     3539205]
                  [9]   Fan YF, Zou BW, Xu QT, Li ZF, Hong Y. Survey on commonsense question answering. Ruan Jian Xue Bao/Journal of Software, 2024,
                     35(1): 236–265 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6913.htm [doi: 10.13328/j.cnki.jos.006913]
                 [10]   Shu K, Zhou XY, Wang SH, Zafarani R, Liu H. The role of user profiles for fake news detection. In: Proc. of the 2019 IEEE/ACM Int’l
                     Conf. on Advances in Social Networks Analysis and Mining. Vancouver: ACM, 2019. 436–439. [doi: 10.1145/3341161.3342927]
                 [11]   Ma J, Gao W, Wong KF. Detect rumors in microblog posts using propagation structure via kernel learning. In: Proc. of the 55th Annual
                     Meeting of the Association for Computational Linguistics. Vancouver: ACL, 2017. 708–717. [doi: 10.18653/v1/P17-1066]
                 [12]   Wu Y, Cao MP, Zhang YZ, Jiang Y. Detecting clickbait in Chinese social media by prompt learning. In: Proc. of the 26th Int’l Conf. on
                     Computer Supported Cooperative Work in Design. Rio de Janeiro: IEEE, 2023. 369–374. [doi: 10.1109/CSCWD57460.2023.10152690]
                 [13]   Popat K. Assessing the credibility of claims on the web. In: Proc. of the 26th Int’l Conf. on World Wide Web Companion. Perth: ACM,
                     2017. 735–739. [doi: 10.1145/3041021.3053379]
                 [14]   Cheng MX, Nazarian S, Bogdan P. VRoC: Variational autoencoder-aided multi-task rumor classifier based on text. In: Proc. of the 2020
                     Web Conf. Taipei: ACM, 2020. 2892–2898. [doi: 10.1145/3366423.3380054]
                 [15]   Meng Q, Liu B, Sun XG, Yan H, Liang CY, Cao JX, Lee RKW, Bao X. Attention-fused deep relevancy matching network for clickbait
                     detection. IEEE Trans. on Computational Social Systems, 2023, 10(6): 3120–3131. [doi: 10.1109/TCSS.2022.3207479]
                 [16]   Yi XY, Zhang JR, Li WH, Wang XT, Xie X. Clickbait detection via contrastive variational modelling of text and label. In: Proc. of the
                     31st Int’l Joint Conf. on Artificial Intelligence. Vienna, 2022. 4475–4481. [doi: 10.24963/ijcai.2022/621]
                 [17]   Shu K, Cui LM, Wang SH, Lee D, Liu H. dEFEND: Explainable fake news detection. In: Proc. of the 25th ACM SIGKDD Int’l Conf. on
                     Knowledge Discovery & Data Mining. Anchorage: ACM, 2019. 395–405. [doi: 10.1145/3292500.3330935]
                 [18]   Kumar V, Khattar D, Gairola S, Kumar Lal Y, Varma V. Identifying clickbait: A multi-strategy approach using neural networks. In: Proc.
                     of the 41st Int’l ACM SIGIR Conf. on Research & Development in Information Retrieval. Ann Arbor: ACM, 2018. 1225–1228. [doi: 10.
                     1145/3209978.3210144]
                 [19]   Wang SY, Wei ZY, Fan ZH, Huang ZF, Sun WJ, Zhang Q, Huang XJ. PathQG: Neural question generation from facts. In: Proc. of the
                     2020 Conf. on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2020. 9066–9075. [doi: 10.
                     18653/v1/2020.emnlp-main.729]
                 [20]   Pan LM, Lu XY, Kan MY, Nakov P. QACheck: A demonstration system for question-guided multi-hop fact-checking. In: Proc. of the
                     2023 Conf. on Empirical Methods in Natural Language Processing: System Demonstrations. Singapore: Association for Computational
                     Linguistics, 2023. 264–273. [doi: 10.18653/v1/2023.emnlp-demo.23]
                 [21]   Liao H, Peng JH, Huang ZY, Zhang W, Li GH, Shu K, Xie X. MUSER: A multi-step evidence retrieval enhancement framework for fake
                     news  detection.  In:  Proc.  of  the  29th  ACM  SIGKDD  Conf.  on  Knowledge  Discovery  and  Data  Mining.  Long  Beach:  ACM,  2023.
                     4461–4472. [doi: 10.1145/3580305.3599873]
                 [22]   Thorne J, Vlachos A. Evidence-based factual error correction. In: Proc. of the 59th Annual Meeting of the Association for Computational
                     Linguistics and the 11th Int’l Joint Conf. on Natural Language Processing. ACL, 2021. 3298–3309. [doi: 10.18653/v1/2021.acl-long.256]
                 [23]   Liang  YY,  Wang  JN,  Zhu  HL,  Wang  L,  Qian  WN,  Lan  YS.  Prompting  large  language  models  with  chain-of-thought  for  few-shot
                     knowledge base question generation. In: Proc. of the 2023 Conf. on Empirical Methods in Natural Language Processing. Singapore: ACL,
                     2023. 4329–4343. [doi: 10.18653/v1/2023.emnlp-main.263]
                 [24]   Mazidi  K,  Nielsen  RD.  Linguistic  considerations  in  automatic  question  generation.  In:  Proc.  of  the  52nd  Annual  Meeting  of  the
                     Association for Computational Linguistics. Baltimore: Association for Computational Linguistics, 2014. 321–326. [doi: 10.3115/v1/P14-
   348   349   350   351   352   353   354   355   356   357   358