Page 358 - 《软件学报》2025年第12期
P. 358

软件学报 ISSN 1000-9825, CODEN RUXUEW                                        E-mail: jos@iscas.ac.cn
                 2025,36(12):5739−5754 [doi: 10.13328/j.cnki.jos.007416] [CSTR: 32375.14.jos.007416]  http://www.jos.org.cn
                 ©中国科学院软件研究所版权所有.                                                          Tel: +86-10-62562563



                                                                             *
                 局部-全局动态图学习与互补融合的点云配准方法

                 邱巧燕  1 ,    叶海良  1 ,    曹飞龙  1 ,    吕    科  2


                 1
                  (中国计量大学 理学院, 浙江 杭州 310018)
                 2
                  (中国科学院大学 工程科学学院, 北京 100049)
                 通信作者: 曹飞龙, E-mail: caofeilong88@zjnu.edu.cn

                 摘 要: 现有基于深度学习的点云配准方法主要聚焦于特征提取和特征匹配方面的研究, 然而, 其在特征提取阶段
                 对局部和全局图结构的挖掘尚不充分, 同时在匹配过程中对差异信息的探索也较为有限. 为此, 提出了一种局部-全
                 局动态图学习与互补融合的点云配准方法. 具体而言, 动态偏移的局部图学习模块通过构造包含几何和语义信息
                 的代理点来刻画特征空间中潜在的图结构, 从而获得更具判别性的局部特征. 其次, 设计了动态关注的全局图学习
                 模块, 根据点之间的相互关系自适应地调整关注权重, 有效地捕获了点云中的长程依赖关系. 为了进一步提高两个
                 点云之间的对应关系, 构造了注意力驱动的互补融合模块, 根据交叉注意力机制来挖掘相似信息和差异信息, 并利
                 用自注意力机制优化特征之间的关联性. 实验结果表明, 该方法在公开数据集上实现了最优的配准效果, 并具备良
                 好的计算效率.
                 关键词: 深度学习; 点云配准; 图神经网络; 特征提取; 特征匹配
                 中图法分类号: TP181

                 中文引用格式: 邱巧燕,  叶海良,  曹飞龙,  吕科.  局部-全局动态图学习与互补融合的点云配准方法.  软件学报,  2025,  36(12):
                 5739–5754. http://www.jos.org.cn/1000-9825/7416.htm
                 英文引用格式: Qiu QY, Ye HL, Cao FL, Lyu K. Point Cloud Registration Method Based on Local-global Dynamic Graph Learning
                 and  Complementary  Fusion.  Ruan  Jian  Xue  Bao/Journal  of  Software,  2025, 36(12): 5739–5754  (in  Chinese).  http://www.jos.org.cn/
                 1000-9825/7416.htm

                 Point Cloud Registration Method Based on Local-global Dynamic Graph Learning and
                 Complementary Fusion
                                                    1
                                       1
                           1
                 QIU Qiao-Yan , YE Hai-Liang , CAO Fei-Long , LYU Ke 2
                 1
                 (College of Sciences, China Jiliang University, Hangzhou 310018, China)
                 2
                 (School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China)
                 Abstract:  Existing  deep  learning-based  point  cloud  registration  methods  primarily  focus  on  feature  extraction  and  feature  matching.
                 However,  the  exploration  of  local  and  global  graph  structures  during  the  feature  extraction  stage  remains  insufficient,  and  the  investigation
                 of  difference  information  during  the  matching  process  is  also  limited.  To  address  these  issues,  this  study  proposes  a  point  cloud
                 registration  method  based  on  local-global  dynamic  graph  learning  and  complementary  fusion.  Specifically,  the  dynamic  offset-based  local
                 graph  learning  module  characterizes  the  underlying  graph  structure  in  the  feature  space  by  constructing  proxy  points  that  contain  both
                 geometric  and  semantic  information,  leading  to  more  discriminative  local  features.  In  addition,  a  dynamic  attention-based  global  graph
                 learning  module  is  designed,  which  adaptively  adjusts  attention  weights  based  on  the  relationships  between  points,  effectively  capturing
                 long-range  dependencies  in  the  point  cloud.  To  further  enhance  the  correspondence  between  the  two  point  clouds,  the  attention-driven
                 complementary  fusion  module  utilizes  the  cross-attention  mechanism  to  extract  similar  and  distinctive  information,  while  applying  the  self-
                 attention  mechanism  to  refine  the  relationships  between  features.  Experimental  results  demonstrate  that  the  proposed  method  achieves
                 optimal registration performance on public datasets while maintaining acceptable computational efficiency.


                 *    基金项目: 国家自然科学基金  (62032022, 62176244)
                  收稿时间: 2024-12-13; 修改时间: 2025-01-10; 采用时间: 2025-02-18; jos 在线出版时间: 2025-09-03
                  CNKI 网络首发时间: 2025-09-04
   353   354   355   356   357   358   359   360   361   362   363