Page 460 - 《软件学报》2025年第5期
P. 460
2360 软件学报 2025 年第 36 卷第 5 期
[18] Yan YJ, Li ZJ, Chen HW. Efficiently mining of maximal frequent item sets based on FP-Tree. Ruan Jian Xue Bao/Journal of Software,
2005, 16(2): 215–222 (in Chinese with English abstract). https://jos.org.cn/jos/article/abstract/20050206 [doi: 10.1360/jos160215]
[19] Li HF, Zhang N. A simple but effective stream maximal frequent itemset mining algorithm. In: Proc. of the 7th Int’l Conf. on
Computational Intelligence and Security. Sanya: IEEE, 2011. 1268–1272. [doi: 10.1109/CIS.2011.281]
[20] Wang SP, Wen YY, Zhao H. Mining full weighted maxinal frequent itensets based on sliding window over data stream. Journal of
Northeastern University (Natural Science), 2016, 37(7): 931–936 (in Chinese with English abstract). [doi: 10.12068/j.issn.1005-3026.
2016.07.005]
[21] Pasquier N, Bastide Y, Taouil R, Lakhal L. Discovering frequent closed itemsets for association rules. In: Proc. of the 7th Int’l Conf. on
Database Theory. Jerusalem: Springer, 1999. 398–416. [doi: 10.1007/3-540-49257-7_25]
[22] Pei J, Han J, Mao R. CLOSET: An efficient algorithm for mining frequent closed itemsets. In: Proc. of the 2000 ACM SIGMOD
Workshop on Research Issues in Data Mining and Knowledge Discovery. New York: ACM, 2000. 21–30. [doi: 10.1145/360402.360431]
[23] Liu JQ, Ye ZS, Yang XC, Wang XL, Shen LJ, Jiang XN. Efficient strategies for incremental mining of frequent closed itemsets over data
streams. Expert Systems with Applications, 2022, 191: 116220. [doi: 10.1016/j.eswa.2021.116220]
[24] Ahmed CF, Tanbeer SK, Jeong BS, Lee YK. Efficient tree structures for high utility pattern mining in incremental databases. IEEE Trans.
on Knowledge and Data Engineering, 2009, 21(12): 1708–1721. [doi: 10.1109/TKDE.2009.46]
[25] Zida S, Fournier-Viger P, Lin JCW, Wu CW, Tseng VS. EFIM: A fast and memory efficient algorithm for high-utility itemset mining.
Knowledge and Information Systems, 2017, 51(2): 595–625. [doi: 10.1007/s10115-016-0986-0]
[26] Duong QH, Fournier-Viger P, Ramampiaro H, Nørvåg K, Dam TL. Efficient high utility itemset mining using buffered utility-lists.
Applied Intelligence, 2018, 48(7): 1859–1877. [doi: 10.1007/s10489-017-1057-2]
[27] Tanbeer SK, Ahmed CF, Jeong BS, Lee YK. Discovering periodic-frequent patterns in transactional databases. In: Proc. of the 13th
Pacific-Asia Conf. on Knowledge Discovery and Data Mining. Bangkok: Springer, 2009. 242–253. [doi: 10.1007/978-3-642-01307-2_24]
[28] Kiran RU, Venkatesh JN, Fournier-Viger P, Toyoda M, Reddy PK, Kitsuregawa M. Discovering periodic patterns in non-uniform
temporal databases. In: Proc. of the 21st Pacific-Asia Conf. on Knowledge Discovery and Data Mining. Jeju: Springer, 2017. 604–617.
[doi: 10.1007/978-3-319-57529-2_47]
[29] Venkatesh J, Kiran RU, Krishna RP, Kitsuregawa M. Discovering periodic-correlated patterns in temporal databases. In: Hameurlain A,
Wagner R, Hartmann S, Ma H, eds. Trans. on Large-scale Data- and Knowledge-centered Systems XXXVIII: Special Issue on Database-
and Expert-systems Applications. Berlin: Springer, 2018. 146–172. [doi: 10.1007/978-3-662-58384-5_6]
[30] Rage UK, Alampally A, Chennupati S, Toyoda M, Reddy PK, Kitsuregawa M, Reddy M. Finding periodic-frequent patterns in temporal
databases using periodic summaries. Data Science and Pattern Recognition, 2019, 3(2): 24–46.
[31] Krzywicki A, Mahidadia A, Bain M. Discovering periodicity in locally repeating patterns. In: Proc. of the 9th IEEE Int’l Conf. on Data
Science and Advanced Analytics. Shenzhen: IEEE, 2022. 1–10. [doi: 10.1109/DSAA54385.2022.10032435]
[32] Kiran RU, Veena P, Ravikumar P, Saideep C, Zettsu K, Shang HC, Toyoda M, Kitsuregawa M, Reddy PK. Efficient discovery of partial
periodic patterns in large temporal databases. Electronics, 2022, 11(10): 1523. [doi: 10.3390/electronics11101523]
[33] Upadhya KJ, Paleja A, Geetha M, Rao BD, Chhabra MS. Finding partial periodic and rare periodic patterns in temporal databases. IEEE
Access, 2023, 11: 92242–92257. [doi: 10.1109/ACCESS.2023.3308820]
[34] Tanbeer SK, Ahmed CF, Jeong BS, Lee YK. Mining regular patterns in transactional databases. IEICE Trans. on Information and
Systems, 2008, E91.D(11): 2568–2577. [doi: 10.1093/ietisy/e91-d.11.2568]
[35] Rashid MM, Karim MR, Jeong BS, Choi HJ. Efficient mining regularly frequent patterns in transactional databases. In: Proc. of the 17th
Int’l Conf. on Database Systems for Advanced Applications. Busan: Springer, 2012. 258–271. [doi: 10.1007/978-3-642-29038-1_20]
[36] Amphawan K, Lenca P, Surarerks A. Mining top-k regular-frequent itemsets using database partitioning and support estimation. Expert
Systems with Applications, 2012, 39(2): 1924–1936. [doi: 10.1016/j.eswa.2011.08.055]
[37] Kumar GV, Kumari VV. MaRFI: Maximal regular frequent itemset mining using a pair of transaction-ids. Int’l Journal of Computer
Science & Engineering Technology, 2013, 4(7): 2229–3345.
[38] Amphawan K, Lenca P. Mining top-k frequent-regular closed patterns. Expert Systems with Applications, 2015, 42(21): 7882–7894. [doi:
10.1016/j.eswa.2015.06.021]
[39] Rehman SU, Khan MA, Nabi HU, Ali S, Alnazzawi N, Khan S. TKIFRPM: A novel approach for topmost-k identical frequent regular
patterns mining from incremental datasets. Applied Sciences, 2023, 13(1): 654. [doi: 10.3390/app13010654]
[40] Chen GS, Li ZS. Discovering periodic cluster patterns in event sequence databases. Applied Intelligence, 2022, 52(13): 15387–15404.
[doi: 10.1007/s10489-022-03186-z]