Page 460 - 《软件学报》2025年第5期
P. 460

2360                                                       软件学报  2025  年第  36  卷第  5  期


                 [18]  Yan YJ, Li ZJ, Chen HW. Efficiently mining of maximal frequent item sets based on FP-Tree. Ruan Jian Xue Bao/Journal of Software,
                     2005, 16(2): 215–222 (in Chinese with English abstract). https://jos.org.cn/jos/article/abstract/20050206 [doi: 10.1360/jos160215]
                 [19]  Li  HF,  Zhang  N.  A  simple  but  effective  stream  maximal  frequent  itemset  mining  algorithm.  In:  Proc.  of  the  7th  Int’l  Conf.  on
                     Computational Intelligence and Security. Sanya: IEEE, 2011. 1268–1272. [doi: 10.1109/CIS.2011.281]
                 [20]  Wang  SP,  Wen  YY,  Zhao  H.  Mining  full  weighted  maxinal  frequent  itensets  based  on  sliding  window  over  data  stream.  Journal  of
                     Northeastern University (Natural Science), 2016, 37(7): 931–936 (in Chinese with English abstract). [doi: 10.12068/j.issn.1005-3026.
                     2016.07.005]
                 [21]  Pasquier N, Bastide Y, Taouil R, Lakhal L. Discovering frequent closed itemsets for association rules. In: Proc. of the 7th Int’l Conf. on
                     Database Theory. Jerusalem: Springer, 1999. 398–416. [doi: 10.1007/3-540-49257-7_25]
                 [22]  Pei  J,  Han  J,  Mao  R.  CLOSET:  An  efficient  algorithm  for  mining  frequent  closed  itemsets.  In:  Proc.  of  the  2000  ACM  SIGMOD
                     Workshop on Research Issues in Data Mining and Knowledge Discovery. New York: ACM, 2000. 21–30. [doi: 10.1145/360402.360431]
                 [23]  Liu JQ, Ye ZS, Yang XC, Wang XL, Shen LJ, Jiang XN. Efficient strategies for incremental mining of frequent closed itemsets over data
                     streams. Expert Systems with Applications, 2022, 191: 116220. [doi: 10.1016/j.eswa.2021.116220]
                 [24]  Ahmed CF, Tanbeer SK, Jeong BS, Lee YK. Efficient tree structures for high utility pattern mining in incremental databases. IEEE Trans.
                     on Knowledge and Data Engineering, 2009, 21(12): 1708–1721. [doi: 10.1109/TKDE.2009.46]
                 [25]  Zida S, Fournier-Viger P, Lin JCW, Wu CW, Tseng VS. EFIM: A fast and memory efficient algorithm for high-utility itemset mining.
                     Knowledge and Information Systems, 2017, 51(2): 595–625. [doi: 10.1007/s10115-016-0986-0]
                 [26]  Duong  QH,  Fournier-Viger  P,  Ramampiaro  H,  Nørvåg  K,  Dam  TL.  Efficient  high  utility  itemset  mining  using  buffered  utility-lists.
                     Applied Intelligence, 2018, 48(7): 1859–1877. [doi: 10.1007/s10489-017-1057-2]
                 [27]  Tanbeer  SK,  Ahmed  CF,  Jeong  BS,  Lee  YK.  Discovering  periodic-frequent  patterns  in  transactional  databases.  In:  Proc.  of  the  13th
                     Pacific-Asia Conf. on Knowledge Discovery and Data Mining. Bangkok: Springer, 2009. 242–253. [doi: 10.1007/978-3-642-01307-2_24]
                 [28]  Kiran  RU,  Venkatesh  JN,  Fournier-Viger  P,  Toyoda  M,  Reddy  PK,  Kitsuregawa  M.  Discovering  periodic  patterns  in  non-uniform
                     temporal databases. In: Proc. of the 21st Pacific-Asia Conf. on Knowledge Discovery and Data Mining. Jeju: Springer, 2017. 604–617.
                     [doi: 10.1007/978-3-319-57529-2_47]
                 [29]  Venkatesh J, Kiran RU, Krishna RP, Kitsuregawa M. Discovering periodic-correlated patterns in temporal databases. In: Hameurlain A,
                     Wagner R, Hartmann S, Ma H, eds. Trans. on Large-scale Data- and Knowledge-centered Systems XXXVIII: Special Issue on Database-
                     and Expert-systems Applications. Berlin: Springer, 2018. 146–172. [doi: 10.1007/978-3-662-58384-5_6]
                 [30]  Rage UK, Alampally A, Chennupati S, Toyoda M, Reddy PK, Kitsuregawa M, Reddy M. Finding periodic-frequent patterns in temporal
                     databases using periodic summaries. Data Science and Pattern Recognition, 2019, 3(2): 24–46.
                 [31]  Krzywicki A, Mahidadia A, Bain M. Discovering periodicity in locally repeating patterns. In: Proc. of the 9th IEEE Int’l Conf. on Data
                     Science and Advanced Analytics. Shenzhen: IEEE, 2022. 1–10. [doi: 10.1109/DSAA54385.2022.10032435]
                 [32]  Kiran RU, Veena P, Ravikumar P, Saideep C, Zettsu K, Shang HC, Toyoda M, Kitsuregawa M, Reddy PK. Efficient discovery of partial
                     periodic patterns in large temporal databases. Electronics, 2022, 11(10): 1523. [doi: 10.3390/electronics11101523]
                 [33]  Upadhya KJ, Paleja A, Geetha M, Rao BD, Chhabra MS. Finding partial periodic and rare periodic patterns in temporal databases. IEEE
                     Access, 2023, 11: 92242–92257. [doi: 10.1109/ACCESS.2023.3308820]
                 [34]  Tanbeer  SK,  Ahmed  CF,  Jeong  BS,  Lee  YK.  Mining  regular  patterns  in  transactional  databases.  IEICE  Trans.  on  Information  and
                     Systems, 2008, E91.D(11): 2568–2577. [doi: 10.1093/ietisy/e91-d.11.2568]
                 [35]  Rashid MM, Karim MR, Jeong BS, Choi HJ. Efficient mining regularly frequent patterns in transactional databases. In: Proc. of the 17th
                     Int’l Conf. on Database Systems for Advanced Applications. Busan: Springer, 2012. 258–271. [doi: 10.1007/978-3-642-29038-1_20]
                 [36]  Amphawan K, Lenca P, Surarerks A. Mining top-k regular-frequent itemsets using database partitioning and support estimation. Expert
                     Systems with Applications, 2012, 39(2): 1924–1936. [doi: 10.1016/j.eswa.2011.08.055]
                 [37]  Kumar GV, Kumari VV. MaRFI: Maximal regular frequent itemset mining using a pair of transaction-ids. Int’l Journal of Computer
                     Science & Engineering Technology, 2013, 4(7): 2229–3345.
                 [38]  Amphawan K, Lenca P. Mining top-k frequent-regular closed patterns. Expert Systems with Applications, 2015, 42(21): 7882–7894. [doi:
                     10.1016/j.eswa.2015.06.021]
                 [39]  Rehman SU, Khan MA, Nabi HU, Ali S, Alnazzawi N, Khan S. TKIFRPM: A novel approach for topmost-k identical frequent regular
                     patterns mining from incremental datasets. Applied Sciences, 2023, 13(1): 654. [doi: 10.3390/app13010654]
                 [40]  Chen GS, Li ZS. Discovering periodic cluster patterns in event sequence databases. Applied Intelligence, 2022, 52(13): 15387–15404.
                     [doi: 10.1007/s10489-022-03186-z]
   455   456   457   458   459   460   461   462   463   464   465