Page 248 - 《软件学报》2025年第5期
P. 248
2148 软件学报 2025 年第 36 卷第 5 期
[21] Khan MAH, Bollegala D, Liu GW, Sezaki K. Multi-tweet summarization of real-time events. In: Proc. of the 2013 Int’l Conf. on Social
Computing. Alexandria: IEEE, 2013. 128–133. [doi: 10.1109/SocialCom.2013.26]
[22] Wang RY, Luo SL, Pan LM, Wu ZT, Yuan YJ, Chen QR. Microblog summarization using paragraph vector and semantic structure.
Computer Speech & Language, 2019, 57: 1–19. [doi: 10.1016/j.csl.2019.01.006]
[23] Hodas NO, Lerman K. The simple rules of social contagion. Scientific Reports, 2014, 4: 4343. [doi: 10.1038/srep04343]
[24] Cha M, Haddadi H, Benevenuto F, Gummadi K. Measuring user influence in Twitter: The million follower fallacy. In: Proc. of the 4th Int’l
AAAI Conf. on Weblogs and Social Media. Washington: AAAI, 2010. 10–17. [doi: 10.1609/icwsm.v4i1.14033]
[25] Kwak H, Lee C, Park H, Moon S. What is Twitter, a social network or a news media? In: Proc. of the 19th Int’l Conf. on World Wide
Web. Raleigh: ACM, 2010. 591–600. [doi: 10.1145/1772690.1772751]
[26] Petrovic S, Osborne M, Lavrenko V. RT to win! Predicting message propagation in twitter. In: Proc. of the 5th Int’l AAAI Conf. on Web
and Social Media. Barcelona: AAAI, 2010. 586–589. [doi: 10.1609/icwsm.v5i1.14149]
[27] He RF, Duan XY. Twitter summarization based on social network and sparse reconstruction. In: Proc. of the 32nd AAAI Conf. on
Artificial Intelligence. New Orleans: AAAI, 2018. 5787–5794. [doi: 10.1609/aaai.v32i1.12058]
[28] Abelson RP. Whatever became of consistency theory? Personality and Social Psychology Bulletin, 1983, 9(1): 37–54. [doi: 10.1177/
0146167283091006]
[29] Shalizi CR, Thomas AC. Homophily and contagion are generically confounded in observational social network studies. Sociological
Methods & Research, 2011, 40(2): 211–239. [doi: 10.1177/0049124111404820]
[30] Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y. Graph attention networks. arXiv:1710.10903, 2018.
[31] Hu BT, Chen QC, Zhu FZ. LCSTS: A large scale Chinese short text summarization dataset. In: Proc. of the 2015 Conf. on Empirical
Methods in Natural Language Processing. Lisbon: Association for Computational Linguistics, 2015. 1967–1972. [doi: 10.18653/v1/D15-
1229]
[32] Kim B, Kim H, Kim G. Abstractive summarization of reddit posts with multi-level memory networks. In: Proc. of the 2019 Conf. of the
North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol. 1 (Long and Short
Papers). Minneapolis: Association for Computational Linguistics, 2019. 2519–2531. [doi: 10.18653/v1/N19-1260]
[33] Ma SM, Sun X, Lin JY, Wang HF. Autoencoder as assistant supervisor: Improving text representation for Chinese social media text
summarization. In: Proc. of the 56th Annual Meeting of the Association for Computational Linguistics (Vol. 2: Short Papers). Melbourne:
Association for Computational Linguistics, 2018. 725–731. [doi: 10.18653/v1/P18-2115]
[34] Ma SM, Sun X, Xu JJ, Wang HF, Li WJ, Su Q. Improving semantic relevance for sequence-to-sequence learning of Chinese social media
text summarization. In: Proc. of the 55th Annual Meeting of the Association for Computational Linguistics (Vol. 2: Short Papers).
Vancouver: Association for Computational Linguistics, 2017. 635–640. [doi: 10.18653/v1/P17-2100]
[35] Völske M, Potthast M, Syed S, Stein B. TL;DR: Mining reddit to learn automatic summarization. In: Proc. of the Workshop on New
Frontiers in Summarization. Copenhagen: Association for Computational Linguistics, 2017. 59–63. [doi: 10.18653/v1/W17-4508]
[36] Chua F, Asur S. Automatic summarization of events from social media. In: Proc. of the 7th Int’l AAAI Conf. on Weblogs and Social
Media. Cambridge: AAAI, 2013. 81–90. [doi: 10.1609/icwsm.v7i1.14394]
[37] Ganesan K, Zhai CX, Viegas E. Micropinion generation: An unsupervised approach to generating ultra-concise summaries of opinions.
In: Proc. of the 21st Int’l Conf. on World Wide Web. Lyon: ACM, 2012. 869–878. [doi: 10.1145/2187836.2187954]
[38] Inouye D, Kalita JK. Comparing twitter summarization algorithms for multiple post summaries. In: Proc. of the 3rd IEEE Int’l Conf. on
Privacy, Security, Risk and Trust and the 3rd IEEE Int’l Conf. on Social Computing. Boston: IEEE, 2011. 298–306. [doi: 10.1109/
PASSAT/SocialCom.2011.31]
[39] Sharifi B, Hutton MA, Kalita J. Summarizing microblogs automatically. In: Proc. of the 2010 Annual Conf. of the North American
Chapter of the Association for Computational Linguistics. Los Angeles: Association for Computational Linguistics, 2010. 685–688.
[40] Dutta S, Ghatak S, Roy M, Ghosh S, Das AK. A graph based clustering technique for tweet summarization. In: Proc. of the 4th Int’l Conf.
on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions). IEEE, 2015. 1–6. [doi: 10.1109/
ICRITO.2015.735927]
[41] Xu W, Grishman R, Meyers A, Ritter A. A preliminary study of tweet summarization using information extraction. In: Proc. of the
Workshop on Language Analysis in Social Media. Atlanta: Association for Computational Linguistics, 2013. 20–29.
[42] Keswani V, Celis LE. Dialect diversity in text summarization on Twitter. In: Proc. of the 2021 Web Conf. Ljubljana: ACM, 2021.
3802–3814. [doi: 10.1145/3442381.3450108]
[43] Cha M, Haddadi H, Benevenuto F, Gummadi K. Measuring user influence in Twitter: The million follower fallacy. In: Proc. of the 4th Int’l
AAAI Conf. on Weblogs and Social Media. Washington: AAAI, 2010. 10–17. [doi: 10.1609/icwsm.v4i1.14033]