Page 248 - 《软件学报》2025年第5期
P. 248

2148                                                       软件学报  2025  年第  36  卷第  5  期


                 [21]  Khan MAH, Bollegala D, Liu GW, Sezaki K. Multi-tweet summarization of real-time events. In: Proc. of the 2013 Int’l Conf. on Social
                     Computing. Alexandria: IEEE, 2013. 128–133. [doi: 10.1109/SocialCom.2013.26]
                 [22]  Wang RY, Luo SL, Pan LM, Wu ZT, Yuan YJ, Chen QR. Microblog summarization using paragraph vector and semantic structure.
                     Computer Speech & Language, 2019, 57: 1–19. [doi: 10.1016/j.csl.2019.01.006]
                 [23]  Hodas NO, Lerman K. The simple rules of social contagion. Scientific Reports, 2014, 4: 4343. [doi: 10.1038/srep04343]
                 [24]  Cha M, Haddadi H, Benevenuto F, Gummadi K. Measuring user influence in Twitter: The million follower fallacy. In: Proc. of the 4th Int’l
                     AAAI Conf. on Weblogs and Social Media. Washington: AAAI, 2010. 10–17. [doi: 10.1609/icwsm.v4i1.14033]
                 [25]  Kwak H, Lee C, Park H, Moon S. What is Twitter, a social network or a news media? In: Proc. of the 19th Int’l Conf. on World Wide
                     Web. Raleigh: ACM, 2010. 591–600. [doi: 10.1145/1772690.1772751]
                 [26]  Petrovic S, Osborne M, Lavrenko V. RT to win! Predicting message propagation in twitter. In: Proc. of the 5th Int’l AAAI Conf. on Web
                     and Social Media. Barcelona: AAAI, 2010. 586–589. [doi: 10.1609/icwsm.v5i1.14149]
                 [27]  He  RF,  Duan  XY.  Twitter  summarization  based  on  social  network  and  sparse  reconstruction.  In:  Proc.  of  the  32nd  AAAI  Conf.  on
                     Artificial Intelligence. New Orleans: AAAI, 2018. 5787–5794. [doi: 10.1609/aaai.v32i1.12058]
                 [28]  Abelson RP. Whatever became of consistency theory? Personality and Social Psychology Bulletin, 1983, 9(1): 37–54. [doi: 10.1177/
                     0146167283091006]
                 [29]  Shalizi  CR,  Thomas  AC.  Homophily  and  contagion  are  generically  confounded  in  observational  social  network  studies.  Sociological
                     Methods & Research, 2011, 40(2): 211–239. [doi: 10.1177/0049124111404820]
                 [30]  Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y. Graph attention networks. arXiv:1710.10903, 2018.
                 [31]  Hu BT, Chen QC, Zhu FZ. LCSTS: A large scale Chinese short text summarization dataset. In: Proc. of the 2015 Conf. on Empirical
                     Methods in Natural Language Processing. Lisbon: Association for Computational Linguistics, 2015. 1967–1972. [doi: 10.18653/v1/D15-
                     1229]
                 [32]  Kim B, Kim H, Kim G. Abstractive summarization of reddit posts with multi-level memory networks. In: Proc. of the 2019 Conf. of the
                     North  American  Chapter  of  the  Association  for  Computational  Linguistics:  Human  Language  Technologies,  Vol.  1  (Long  and  Short
                     Papers). Minneapolis: Association for Computational Linguistics, 2019. 2519–2531. [doi: 10.18653/v1/N19-1260]
                 [33]  Ma SM, Sun X, Lin JY, Wang HF. Autoencoder as assistant supervisor: Improving text representation for Chinese social media text
                     summarization. In: Proc. of the 56th Annual Meeting of the Association for Computational Linguistics (Vol. 2: Short Papers). Melbourne:
                     Association for Computational Linguistics, 2018. 725–731. [doi: 10.18653/v1/P18-2115]
                 [34]  Ma SM, Sun X, Xu JJ, Wang HF, Li WJ, Su Q. Improving semantic relevance for sequence-to-sequence learning of Chinese social media
                     text  summarization.  In:  Proc.  of  the  55th  Annual  Meeting  of  the  Association  for  Computational  Linguistics  (Vol.  2:  Short  Papers).
                     Vancouver: Association for Computational Linguistics, 2017. 635–640. [doi: 10.18653/v1/P17-2100]
                 [35]  Völske M, Potthast M, Syed S, Stein B. TL;DR: Mining reddit to learn automatic summarization. In: Proc. of the Workshop on New
                     Frontiers in Summarization. Copenhagen: Association for Computational Linguistics, 2017. 59–63. [doi: 10.18653/v1/W17-4508]
                 [36]  Chua F, Asur S. Automatic summarization of events from social media. In: Proc. of the 7th Int’l AAAI Conf. on Weblogs and Social
                     Media. Cambridge: AAAI, 2013. 81–90. [doi: 10.1609/icwsm.v7i1.14394]
                 [37]  Ganesan K, Zhai CX, Viegas E. Micropinion generation: An unsupervised approach to generating ultra-concise summaries of opinions.
                     In: Proc. of the 21st Int’l Conf. on World Wide Web. Lyon: ACM, 2012. 869–878. [doi: 10.1145/2187836.2187954]
                 [38]  Inouye D, Kalita JK. Comparing twitter summarization algorithms for multiple post summaries. In: Proc. of the 3rd IEEE Int’l Conf. on
                     Privacy,  Security,  Risk  and  Trust  and  the  3rd  IEEE  Int’l  Conf.  on  Social  Computing.  Boston:  IEEE,  2011.  298–306.  [doi:  10.1109/
                     PASSAT/SocialCom.2011.31]
                 [39]  Sharifi  B,  Hutton  MA,  Kalita  J.  Summarizing  microblogs  automatically.  In:  Proc.  of  the  2010  Annual  Conf.  of  the  North  American
                     Chapter of the Association for Computational Linguistics. Los Angeles: Association for Computational Linguistics, 2010. 685–688.
                 [40]  Dutta S, Ghatak S, Roy M, Ghosh S, Das AK. A graph based clustering technique for tweet summarization. In: Proc. of the 4th Int’l Conf.
                     on  Reliability,  Infocom  Technologies  and  Optimization  (ICRITO)  (Trends  and  Future  Directions).  IEEE,  2015.  1–6.  [doi:  10.1109/
                     ICRITO.2015.735927]
                 [41]  Xu  W,  Grishman  R,  Meyers  A,  Ritter  A.  A  preliminary  study  of  tweet  summarization  using  information  extraction.  In:  Proc.  of  the
                     Workshop on Language Analysis in Social Media. Atlanta: Association for Computational Linguistics, 2013. 20–29.
                 [42]  Keswani  V,  Celis  LE.  Dialect  diversity  in  text  summarization  on  Twitter.  In:  Proc.  of  the  2021  Web  Conf.  Ljubljana:  ACM,  2021.
                     3802–3814. [doi: 10.1145/3442381.3450108]
                 [43]  Cha M, Haddadi H, Benevenuto F, Gummadi K. Measuring user influence in Twitter: The million follower fallacy. In: Proc. of the 4th Int’l
                     AAAI Conf. on Weblogs and Social Media. Washington: AAAI, 2010. 10–17. [doi: 10.1609/icwsm.v4i1.14033]
   243   244   245   246   247   248   249   250   251   252   253