Page 249 - 《软件学报》2025年第5期
P. 249
贺瑞芳 等: 基于去噪图自编码器的无监督社交媒体文本摘要 2149
[44] Alsaedi N, Burnap P, Rana O. Automatic summarization of real world events using Twitter. In: Proc. of the 10th Int’l AAAI Conf. on
Web and Social Media. Cologne: AAAI, 2016. 511–514. [doi: 10.1609/icwsm.v10i1.14766]
[45] Liu XH, Li YT, Wei FR, Zhou M. Graph-based multi-tweet summarization using social signals. In: Proc. of the 2012 COLING. Mumbai:
The COLING 2012 Organizing Committee, 2012. 1699–1714.
[46] Duan YJ, Chen ZM, Wei FR, Zhou M, Shum HY. Twitter topic summarization by ranking Tweets using social influence and content
quality. In: Proc. of the 2012 COLING. Mumbai: The COLING 2012 Organizing Committee, 2012. 763–780.
[47] Li J, Gao W, Wei ZY, Peng BL, Wong KF. Using content-level structures for Summarizing microblog repost trees. In: Proc. of the 2015
Conf. on Empirical Methods in Natural Language Processing. Lisbon: Association for Computational Linguistics, 2015. 2168–2178. [doi:
10.18653/v1/D15-1259]
[48] Dutta S, Das AK, Bhattacharya A, Dutta G, Parikh KK, Das A, Ganguly D. Community detection based tweet summarization. In:
Emerging Technologies in Data Mining and Information Security. Singapore: Springer, 2019. 797–808. [doi: 10.1007/978-981-13-1498-
8_70]
[49] Han Y, Xu J, Fang BX, Zhou B, Jia Y. Structural supportiveness theory on social networks. Chinese Journal of Computers, 2014, 37(4):
905–914 (in Chinese with English abstract). [doi: 10.3724/SP.J.1016.2014.00905]
[50] Cao JX, Wu JL, Shi W, Liu B, Zheng X, Luo JZ. Sina microblog information diffusion analysis and prediction. Chinese Journal of
Computers, 2014, 37(4): 779–790 (in Chinese with English abstract). [doi: 10.3724/SP.J.1016.2014.00779]
[51] Chang Y, Wang XH, Mei QZ, Liu Y. Towards Twitter context summarization with user influence models. In: Proc. of the 6th ACM Int’l
Conf. on Web Search and Data Mining. Rome: ACM, 2013. 527–536. [doi: 10.1145/2433396.2433464]
[52] He RF, Liu HY, Zhao LL. SCHC: Incorporating social contagion and hashtag consistency for topic-oriented social summarization. In:
Proc. of the 26th Int’l Conf. on Database Systems for Advanced Applications. Taipei: Springer, 2021. 641–657. [doi: 10.1007/978-3-030-
73197-7_44]
[53] Liu HY, He RF, Zhao LL, Wang HC, Wang RF. SCMGR: Using social context and multi-granularity relations for unsupervised social
summarization. In: Proc. of the 30th ACM Int’l Conf. on Information and Knowledge Management. Virtual Event: ACM, 2021.
1058–1068. [doi: 10.1145/3459637.3482476]
[54] Doan XD, Nguyen LM, Bui KHN. Multi graph neural network for extractive long document summarization. In: Proc. of the 29th Int’l
Conf. on Computational Linguistics. Gyeongju: Int’l Committee on Computational Linguistics, 2022. 5870–5875.
[55] Song MY, Feng Y, Jing LP. HISum: Hyperbolic interaction model for extractive multi-document summarization. In: Proc. of the 2023
ACM Web Conf. Austin: ACM, 2023. 1427–1436. [doi: 10.1145/3543507.3583197]
[56] Mao QR, Zhu HD, Liu JN, Ji C, Peng H, Li JX, Wang LH, Wang Z. MuchSUM: Multi-channel graph neural network for extractive
summarization. In: Proc. of the 45th Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. Madrid: ACM,
2022. 2617–2622. [doi: 10.1145/3477495.3531906]
[57] Kipf TN, Welling M. Variational graph auto-encoders. arXiv:1611.07308, 2016.
[58] Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. arXiv:1609.02907, 2017.
[59] Freitag M, Roy S. Unsupervised natural language generation with denoising autoencoders. In: Proc. of the 2018 Conf. on Empirical
Methods in Natural Language Processing. Brussels: Association for Computational Linguistics, 2018. 3922–3929. [doi: 10.18653/v1/D18-
1426]
[60] Wang L, Zhao W, Jia SY, Li SJ, Liu JM. Denoising based sequence-to-sequence pre-training for text generation. In: Proc. of the 2019
Conf. on Empirical Methods in Natural Language Processing and the 9th Int’l Joint Conf. on Natural Language Processing (EMNLPI-
JCNLP). Hong Kong: Association for Computational Linguistics, 2019. 4003–4015. [doi: 10.18653/v1/D19-1412]
[61] Coscia M, Neffke F. Network backboning with noisy data. arXiv:1701.07336, 2017.
[62] Serrano MÁ, Boguñá M, Vespignani A. Extracting the multiscale backbone of complex weighted networks. Proc. of the National
Academy of Sciences of the United States of America, 2009, 106(16): 6483–6488. [doi: 10.1073/pnas.0808904106]
[63] He RF, Zhao LL, Liu HY. TWEETSUM: Event oriented social summarization dataset. In: Proc. of the 28th Int’l Conf. on Computational
Linguistics. Barcelona: Int’l Committee on Computational Linguistics, 2020. 5731–5736. [doi: 10.18653/v1/2020.coling-main.504]
[64] Cacioppo JT, Fowler JH, Christakis NA. Alone in the crowd: The structure and spread of loneliness in a large social network. Journal of
Personality and Social Psychology, 2009, 97(6): 977–991. [doi: 10.1037/a0016076]
[65] Christakis NA, Fowler JH. Social contagion theory: Examining dynamic social networks and human behavior. Statistics in Medicine,
2013, 32(4): 556–577. [doi: 10.1002/sim.5408]
[66] Defferrard M, Bresson X, Vandergheynst P. Convolutional neural networks on graphs with fast localized spectral filtering. In: Proc. of the
30th Int’l Conf. on Neural Information Processing Systems. Barcelona: Curran Associates Inc., 2016. 3844–3852.