Page 249 - 《软件学报》2025年第5期
P. 249

贺瑞芳 等: 基于去噪图自编码器的无监督社交媒体文本摘要                                                    2149


                 [44]  Alsaedi N, Burnap P, Rana O. Automatic summarization of real world events using Twitter. In: Proc. of the 10th Int’l AAAI Conf. on
                     Web and Social Media. Cologne: AAAI, 2016. 511–514. [doi: 10.1609/icwsm.v10i1.14766]
                 [45]  Liu XH, Li YT, Wei FR, Zhou M. Graph-based multi-tweet summarization using social signals. In: Proc. of the 2012 COLING. Mumbai:
                     The COLING 2012 Organizing Committee, 2012. 1699–1714.
                 [46]  Duan YJ, Chen ZM, Wei FR, Zhou M, Shum HY. Twitter topic summarization by ranking Tweets using social influence and content
                     quality. In: Proc. of the 2012 COLING. Mumbai: The COLING 2012 Organizing Committee, 2012. 763–780.
                 [47]  Li J, Gao W, Wei ZY, Peng BL, Wong KF. Using content-level structures for Summarizing microblog repost trees. In: Proc. of the 2015
                     Conf. on Empirical Methods in Natural Language Processing. Lisbon: Association for Computational Linguistics, 2015. 2168–2178. [doi:
                     10.18653/v1/D15-1259]
                 [48]  Dutta  S,  Das  AK,  Bhattacharya  A,  Dutta  G,  Parikh  KK,  Das  A,  Ganguly  D.  Community  detection  based  tweet  summarization.  In:
                     Emerging Technologies in Data Mining and Information Security. Singapore: Springer, 2019. 797–808. [doi: 10.1007/978-981-13-1498-
                     8_70]
                 [49]  Han Y, Xu J, Fang BX, Zhou B, Jia Y. Structural supportiveness theory on social networks. Chinese Journal of Computers, 2014, 37(4):
                     905–914 (in Chinese with English abstract). [doi: 10.3724/SP.J.1016.2014.00905]
                 [50]  Cao JX, Wu JL, Shi W, Liu B, Zheng X, Luo JZ. Sina microblog information diffusion analysis and prediction. Chinese Journal of
                     Computers, 2014, 37(4): 779–790 (in Chinese with English abstract). [doi: 10.3724/SP.J.1016.2014.00779]
                 [51]  Chang Y, Wang XH, Mei QZ, Liu Y. Towards Twitter context summarization with user influence models. In: Proc. of the 6th ACM Int’l
                     Conf. on Web Search and Data Mining. Rome: ACM, 2013. 527–536. [doi: 10.1145/2433396.2433464]
                 [52]  He RF, Liu HY, Zhao LL. SCHC: Incorporating social contagion and hashtag consistency for topic-oriented social summarization. In:
                     Proc. of the 26th Int’l Conf. on Database Systems for Advanced Applications. Taipei: Springer, 2021. 641–657. [doi: 10.1007/978-3-030-
                     73197-7_44]
                 [53]  Liu HY, He RF, Zhao LL, Wang HC, Wang RF. SCMGR: Using social context and multi-granularity relations for unsupervised social
                     summarization.  In:  Proc.  of  the  30th  ACM  Int’l  Conf.  on  Information  and  Knowledge  Management.  Virtual  Event:  ACM,  2021.
                     1058–1068. [doi: 10.1145/3459637.3482476]
                 [54]  Doan XD, Nguyen LM, Bui KHN. Multi graph neural network for extractive long document summarization. In: Proc. of the 29th Int’l
                     Conf. on Computational Linguistics. Gyeongju: Int’l Committee on Computational Linguistics, 2022. 5870–5875.
                 [55]  Song MY, Feng Y, Jing LP. HISum: Hyperbolic interaction model for extractive multi-document summarization. In: Proc. of the 2023
                     ACM Web Conf. Austin: ACM, 2023. 1427–1436. [doi: 10.1145/3543507.3583197]
                 [56]  Mao QR, Zhu HD, Liu JN, Ji C, Peng H, Li JX, Wang LH, Wang Z. MuchSUM: Multi-channel graph neural network for extractive
                     summarization. In: Proc. of the 45th Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. Madrid: ACM,
                     2022. 2617–2622. [doi: 10.1145/3477495.3531906]
                 [57]  Kipf TN, Welling M. Variational graph auto-encoders. arXiv:1611.07308, 2016.
                 [58]  Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. arXiv:1609.02907, 2017.
                 [59]  Freitag  M,  Roy  S.  Unsupervised  natural  language  generation  with  denoising  autoencoders.  In:  Proc.  of  the  2018  Conf.  on  Empirical
                     Methods in Natural Language Processing. Brussels: Association for Computational Linguistics, 2018. 3922–3929. [doi: 10.18653/v1/D18-
                     1426]
                 [60]  Wang L, Zhao W, Jia SY, Li SJ, Liu JM. Denoising based sequence-to-sequence pre-training for text generation. In: Proc. of the 2019
                     Conf. on Empirical Methods in Natural Language Processing and the 9th Int’l Joint Conf. on Natural Language Processing (EMNLPI-
                     JCNLP). Hong Kong: Association for Computational Linguistics, 2019. 4003–4015. [doi: 10.18653/v1/D19-1412]
                 [61]  Coscia M, Neffke F. Network backboning with noisy data. arXiv:1701.07336, 2017.
                 [62]  Serrano  MÁ,  Boguñá  M,  Vespignani  A.  Extracting  the  multiscale  backbone  of  complex  weighted  networks.  Proc.  of  the  National
                     Academy of Sciences of the United States of America, 2009, 106(16): 6483–6488. [doi: 10.1073/pnas.0808904106]
                 [63]  He RF, Zhao LL, Liu HY. TWEETSUM: Event oriented social summarization dataset. In: Proc. of the 28th Int’l Conf. on Computational
                     Linguistics. Barcelona: Int’l Committee on Computational Linguistics, 2020. 5731–5736. [doi: 10.18653/v1/2020.coling-main.504]
                 [64]  Cacioppo JT, Fowler JH, Christakis NA. Alone in the crowd: The structure and spread of loneliness in a large social network. Journal of
                     Personality and Social Psychology, 2009, 97(6): 977–991. [doi: 10.1037/a0016076]
                 [65]  Christakis NA, Fowler JH. Social contagion theory: Examining dynamic social networks and human behavior. Statistics in Medicine,
                     2013, 32(4): 556–577. [doi: 10.1002/sim.5408]
                 [66]  Defferrard M, Bresson X, Vandergheynst P. Convolutional neural networks on graphs with fast localized spectral filtering. In: Proc. of the
                     30th Int’l Conf. on Neural Information Processing Systems. Barcelona: Curran Associates Inc., 2016. 3844–3852.
   244   245   246   247   248   249   250   251   252   253   254