Page 247 - 《软件学报》2025年第5期
P. 247

贺瑞芳 等: 基于去噪图自编码器的无监督社交媒体文本摘要                                                    2147


                     474]
                  [3]  Jia RP, Cao Y, Fang F, Zhou YC, Fang Z, Liu YB, Wang S. Deep differential amplifier for extractive summarization. In: Proc. of the 59th
                     Annual Meeting of the Association for Computational Linguistics and the 11th Int’l Joint Conf. on Natural Language Processing (Vol. 1:
                     Long Papers). Online: Association for Computational Linguistics, 2021. 366–376. [doi: 10.18653/v1/2021.acl-long.31]
                  [4]  Pilault J, Li R, Subramanian S, Pal C. On extractive and abstractive neural document summarization with Transformer language models.
                     In: Proc. of the 2020 Conf. on Empirical Methods in Natural Language Processing. Online: Association for Computational Linguistics,
                     2020. 9308–9319. [doi: 10.18653/v1/2020.emnlp-main.748]
                  [5]  Shi JX, Liang C, Hou L, Li JZ, Liu ZY, Zhang HW. DeepChannel: Salience estimation by contrastive learning for extractive document
                     summarization.  In:  Proc.  of  the  33rd  AAAI  Conf.  on  Artificial  Intelligence.  Honolulu:  AAAI,  2019.  6999–7006.  [doi:  10.1609/aaai.
                     v33i01.33016999]
                  [6]  Liu  YX,  Liu  PF.  SimCLS:  A  simple  framework  for  contrastive  learning  of  abstractive  summarization.  In:  Proc.  of  the  59th  Annual
                     Meeting of the Association for Computational Linguistics and the 11th Int’l Joint Conf. on Natural Language Processing (Vol. 2: Short
                     Papers). Online: Association for Computational Linguistics, 2021. 1065–1072. [doi: 10.18653/v1/2021.acl-short.135]
                  [7]  Liu YX, Liu PF, Radev D, Neubig G. BRIO: Bringing order to abstractive summarization. In: Proc. of the 60th Annual Meeting of the
                     Association for Computational Linguistics (Vol. 1: Long Papers). Dublin: Association for Computational Linguistics, 2022. 2890–2903.
                     [doi: 10.18653/v1/2022.acl-long.207]
                  [8]  Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-training of deep bidirectional Transformers for language understanding. In: Proc.
                     of the 2019 Conf. of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol. 1
                     (Long and Short Papers). Minneapolis: Association for Computational Linguistics, 2019. 4171–4186. [doi: 10.18653/v1/N19-1423]
                  [9]  Lewis  M,  Liu  YH,  Goyal  N,  Ghazvininejad  M,  Mohamed  A,  Levy  O,  Stoyanov  V,  Zettlemoyer  L.  BART:  Denoising  sequence-to-
                     sequence  pre-training  for  natural  language  generation,  translation,  and  comprehension.  In:  Proc.  of  the  58th  Annual  Meeting  of  the
                     Association for Computational Linguistics. Online: Association for Computational Linguistics, 2020. 7871–7880.
                 [10]  Liu Y, Lapata M. Text summarization with pretrained encoders. In: Proc. of the 2019 Conf. on Empirical Methods in Natural Language
                     Processing and the 9th Int’l Joint Conf. on Natural Language Processing. Hong Kong: Association for Computational Linguistics, 2019.
                     3730–3740. [doi: 10.18653/v1/D19-1387]
                 [11]  Pietruszka M, Borchmann Ł, Garncarek Ł. Sparsifying transformer models with trainable representation pooling. In: Proc. of the 60th
                     Annual  Meeting  of  the  Association  for  Computational  Linguistics  (Vol.  1:  Long  Papers).  Dublin:  Association  for  Computational
                     Linguistics, 2022. 8616–8633. [doi: 10.18653/v1/2022.acl-long.590]
                 [12]  Guo M, Ainslie J, Uthus D, Ontanon S, Ni J, Sung YH, Yang YF. LongT5: Efficient text-to-text Transformer for long sequences. In:
                     Findings  of  the  Association  for  Computational  Linguistics:  NAACL  2022.  Seattle:  Association  for  Computational  Linguistics,  2022.
                     724–736. [doi: 10.18653/v1/2022.findings-naacl.55]
                 [13]  Rothe  S,  Narayan  S,  Severyn  A.  Leveraging  pre-trained  checkpoints  for  sequence  generation  tasks.  Trans.  of  the  Association  for
                     Computational Linguistics. 2020, 8, 264–280. [doi: 10.1162/tacl_a_00313]
                 [14]  Ge SY, Huang JX, Meng Y, Han JW. FineSum: Target-oriented, fine-grained opinion summarization. In: Proc. of the 16th ACM Int’l
                     Conf. on Web Search and Data Mining. Singapore: ACM, 2023. 1093–1101. [doi: 10.1145/3539597.3570397]
                 [15]  Yoon S, Chan HP, Han JW. PDSum: Prototype-driven continuous summarization of evolving multi-document sets stream. In: Proc. of the
                     2023 ACM Web Conf. Austin: ACM, 2023. 1650–1661. [doi: 10.1145/3543507.3583371]
                 [16]  Amplayo RK, Lapata M. Unsupervised opinion summarization with noising and denoising. In: Proc. of the 58th Annual Meeting of the
                     Association for Computational Linguistics. Online: Association for Computational Linguistics, 2020. 1934–1945. [doi: 10.18653/v1/2020.
                     acl-main.175]
                 [17]  Bražinskas  A,  Lapata  M,  Titov  I.  Unsupervised  opinion  summarization  as  copycat-review  generation.  In:  Proc.  of  the  58th  Annual
                     Meeting of the Association for Computational Linguistics. Online: Association for Computational Linguistics, 2020. 5151–5169. [doi: 10.
                     18653/v1/2020.acl-main.461]
                 [18]  Andy A, Wijaya DT, Callison-Burch C. Winter is here: Summarizing Twitter streams related to pre-scheduled events. In: Proc. of the 2nd
                     Workshop on Storytelling. Florence: Association for Computational Linguistics, 2019. 112–116. [doi: 10.18653/v1/W19-3412]
                 [19]  Gillani M, Ilyas MU, Saleh S, Alowibdi JS, Aljohani N, Alotaibi FS. Post summarization of microblogs of sporting events. In: Proc. of
                     the 26th Int’l Conf. on World Wide Web Companion. Perth, 2017. 59–68. [doi: 10.1145/3041021.3054146]
                 [20]  Zogan H, Razzak I, Jameel S, Xu GD. DepressionNet: A novel summarization boosted deep framework for depression detection on social
                     media. In: Proc. of the 44th Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. 2021. 133–142. [doi: 10.
                     1145/3404835.3462938]
   242   243   244   245   246   247   248   249   250   251   252