Page 250 - 《软件学报》2025年第5期
P. 250

2150                                                       软件学报  2025  年第  36  卷第  5  期


                 [67]  Yasunaga M, Zhang R, Meelu K, Pareek A, Srinivasan K, Radev D. Graph-based neural multi-document summarization. In: Proc. of the
                     21st Conf. on Computational Natural Language Learning. Vancouver: Association for Computational Linguistics, 2017. 452–462. [doi:
                     10.18653/v1/K17-1045]
                 [68]  Nguyen DQ, Vu T, Nguyen AT. BERTweet: A pre-trained language model for English Tweets. In: Proc. of the 2020 Conf. on Empirical
                     Methods in Natural Language Processing: System Demonstrations. Online: Association for Computational Linguistics, 2020. 9–14. [doi:
                     10.18653/v1/2020.emnlp-demos.2]
                 [69]  Lin CY. ROUGE: A package for automatic evaluation of summaries. In: Text Summarization Branches Out. Barcelona: Association for
                     Computational Linguistics, 2004. 74–81.
                 [70]  Radev DR, Blair-Goldensohn S, Zhang Z. Experiments in single and multi-document summarization using MEAD. In: Proc. of the 1st
                     Document Understanding Conf. 2001. 1194–1197.
                 [71]  Gong YH, Liu X. Generic text summarization using relevance measure and latent semantic analysis. In: Proc. of the 24th Annual Int’l
                     ACM SIGIR Conf. on Research and Development in Information Retrieval. New Orleans: ACM, 2001. 19–25. [doi: 10.1145/383952.
                     383955]
                 [72]  Erkan  G,  Radev  DR.  LexRank:  Graph-based  lexical  centrality  as  salience  in  text  summarization.  Journal  of  Artificial  Intelligence
                     Research, 2004, 22(1): 457–479.
                 [73]  He ZY, Chen C, Bu JJ, Wang C, Zhang LJ, Cai D, He XF. Document summarization based on data reconstruction. In: Proc. of the 26th
                     AAAI Conf. on Artificial Intelligence. Toronto: AAAI Press, 2012. 620–626.
                 [74]  Liu H, Yu HL, Deng ZH. Multi-document summarization based on two-level sparse representation model. In: Proc. of the 29th AAAI
                     Conf. on Artificial Intelligence. Austin: AAAI Press, 2015. 196–202.
                 [75]  Zheng  H,  Lapata  M.  Sentence  centrality  revisited  for  unsupervised  summarization.  In:  Proc.  of  the  57th  Annual  Meeting  of  the
                     Association for Computational Linguistics. Florence: Association for Computational Linguistics, 2019. 6236–6247. [doi: 10.18653/v1/
                     P19-1628]
                 [76]  Wang  KX,  Chang  BB,  Sui  ZF.  A  spectral  method  for  unsupervised  multi-document  summarization.  In:  Proc.  of  the  2020  Conf.  on
                     Empirical Methods in Natural Language Processing. Online: Association for Computational Linguistics, 2020. 435–445. [doi: 10.18653/
                     v1/2020.emnlp-main.32]

                 附中文参考文献:
                 [49]  韩毅, 许进, 方滨兴, 周斌, 贾焰. 社交网络的结构支撑理论. 计算机学报, 2014, 37(4): 905–914. [doi: 10.3724/SP.J.1016.2014.00905]
                 [50]  曹玖新, 吴江林, 石伟, 刘波, 郑啸, 罗军舟. 新浪微博网信息传播分析与预测. 计算机学报, 2014, 37(4): 779–790. [doi: 10.3724/SP.J.
                     1016.2014.00779]


                             贺瑞芳(1979-), 女, 博士, 教授, CCF  专业会员,            刘焕宇(1997-), 男, 硕士, 主要研究领域为自然
                            主要研究领域为自然语言处理, 社会媒体挖掘,                       语言处理, 文本摘要.
                            机器学习.



                             赵堂龙(2000-), 男, 硕士生, 主要研究领域为自
                            然语言处理, 文本摘要.
   245   246   247   248   249   250   251   252   253   254   255