Page 78 - 《软件学报》2021年第11期
P. 78

软件学报 ISSN 1000-9825, CODEN RUXUEW                                       E-mail: jos@iscas.ac.cn
                 Journal of Software,2021,32(11):3404−3422 [doi: 10.13328/j.cnki.jos.006090]   http://www.jos.org.cn
                 ©中国科学院软件研究所版权所有.                                                         Tel: +86-10-62562563


                                                                    ∗
                 面向数据特征的人机物融合服务分派方法

                 袁   敏,   陈   卓,   徐冰青


                 (南京师范大学  计算机与电子信息学院/人工智能学院,江苏  南京   210023)
                 通讯作者:  袁敏, E-mail: myuan@njnu.edu.cn

                 摘   要:  随着工业互联网的不断发展,大数据和人工智能促成了人机物全面互联.用户使用服务时产生的任务数
                 据量正呈指数级增长,在为线上用户推荐服务满足个性化需求的同时,对于需要通过人机物交互完成的服务,如何整
                 合线上和线下资源,并分派合适的人快速、有效地完成任务,也已成为一个挑战性问题.为了保证服务分派的准确性,
                 提出了一种综合考虑人机物各方面数据特征的跨域融合服务分派方法,分别对用户评价的情感倾向性和业务数据
                 的相似性进行分析,然后加入对业务执行有影响的物理世界的属性特征,以获得更合理的分派.最后,以一个互联网
                 在线诊疗平台的医患分派为例,结果表明,文中提出的分派方法具有较高的准确性,可以获得更好的用户体验.
                 关键词:  跨域融合;智能服务;服务分派;用户偏好;情感倾向分析
                 中图法分类号: TP311


                 中文引用格式:  袁敏,陈卓,徐冰青.面向数据特征的人机物融合服务分派方法.软件学报,2021,32(11):3404−3422.  http://www.
                 jos.org.cn/1000-9825/6090.htm
                 英文引用格式: Yuan M, Chen Z, Xu BQ. Human-cyber-physical services dispatch approach for data characteristics. Ruan Jian
                 Xue Bao/Journal of Software, 2021,32(11):3404−3422 (in Chinese). http://www.jos.org.cn/1000-9825/6090.htm
                 Human-cyber-physical Services Dispatch Approach for Data Characteristics

                 YUAN Min,  CHEN Zhuo,  XU Bing-Qing
                 (School of Computer and Electronic Information/ School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China)

                 Abstract:    With the continuous development of the industrial Internet, big data and artificial intelligence contribute to the comprehensive
                 interconnection in human-cyber-physical system. The amount of task data generated by users using the service is growing exponentially.
                 While recommending services for online users to meet personalized needs, and for services that need to be completed through human-
                 cyber-physical interaction, it has become a challenging problem how to integrate the various offline and online resources to dispatch the
                 right person  to  complete the task quickly  and  effectively. In order to  ensure  the  accuracy of services dispatch, this study proposes a
                 cross-domain  collaborative service dispatch  method that  takes into  account the data  characteristics  of  all these factors in
                 human-cyber-physical system. In order to get  a  more  reasonable dispatch, the sentiment  characteristics of user  evaluation  and the
                 similarity of business data are analyzed respectively, and then the attributes inherent in the real world are added of which have an impact
                 on business processes. Finally, taking the doctor-patient assignment of an online diagnosis and treatment platform on the Internet as an
                 example, the results show that the method proposed in this study has high accuracy and can improve the efficiency of task execution.
                 Key words:    cross-domain integration; intelligent service; service dispatch; user preference; sentiment analysis

                    工业互联网的快速发展,深度支撑并改造了人类用户的各种社会关系.人的作用和影响不断增强,形成一种
                                           [1]
                 人机物一体融合的综合发展态势 .软件正在成为未来社会运行的基础设施,其应用已经成为世界经济社会发

                   ∗  基金项目:  国家自然科学基金(41771411);  江苏省教育科学“十三五”规划(C-b/2016/01/24);  江苏省研究生科研与实践创新计
                 划(SJCX19_0201)
                      Foundation item: National Natural Science Foundation of China (41771411); “13th Five-Year Plan” of Education Science in Jiangsu
                 Province (C-b/2016/01/24); Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX19_0201)
                      收稿时间: 2020-01-02;  修改时间: 2020-03-09;  采用时间:2020-05-18
   73   74   75   76   77   78   79   80   81   82   83