Page 77 - 《软件学报》2021年第11期
P. 77
赵时海 等:用户群体满意度最大化的 Top-k 在线服务评价 3403
[21] Liu Y, Zhang J, Zhu QY, et al. CONGRESS: A hybrid reputation system for coping with rating subjectivity. IEEE Trans. on
Computational Social Systems, 2017,4(3):163−178.
[22] Brandt F, Conitzer V, Endriss U, et al. Handbook of Computational Social Choice. Cambridge: Cambridge University Press, 2016.
[23] Elkind E, Faliszewski P, Skowron P, et al. Properties of multiwinner voting rules. Social Choice and Welfare, 2017,48(3):599−632.
[24] Procaccia AD, Rosenschein JS, Zohar A. On the complexity of achieving proportional representation. Social Choice and Welfare,
2008,30(3):353−362.
[25] Freixas J, Zwicker WS. Weighted voting, abstention, and multiple levels of approval. Social Choice and Welfare, 2003,21(3):
399−431.
[26] Elkind E, Markakis E, Obraztsova S, et al. Complexity of finding equilibria of plurality voting under structured preferences. In:
Proc. of the 2016 Int’l Conf. on Autonomous Agents & Multiagent Systems. Singapore, 2016. 394−401.
[27] Skowron P, Faliszewski P, Slinko A. Axiomatic characterization of committee scoring rules. Journal of Economic Theory, 2019,
180:244−273. [doi: 10.1016/j.jet.2018.12.011]
[28] Kamishima T. Nantonac collaborative filtering: Recommendation based on order responses. In: Proc. of the 9th ACM SIGKDD
Int’l Conf. on Knowledge Discovery and Data Mining. New York, 2003. 583−588.
[29] Hwang WS, Lee HJ, Kim SW, et al. Efficient recommendation methods using category experts for a large dataset. Information
Fusion, 2016,28:75−82. [doi: 10.1016/j.inffus.2015.07.005]
[30] Lu T, Boutilier C. Effective sampling and learning for Mallows models with pairwise-preference data. Journal of Machine Learning
Research, 2014,15(1):3783−3829.
[31] Fernández-Tobías I, Cantador I, Tomeo P, et al. Addressing the user cold start with cross-domain collaborative filtering: exploiting
item metadata in matrix factorization. User Modeling and User-adapted Interaction, 2019,29(2):443−486. [doi: 10.1007/s11257-
018-9217-6]
附中文参考文献:
[4] 白琳,叶丹,魏峻,黄涛.一种高效的基于服务功能规约的服务选择方法.软件学报,2015,26(8):1886−1906. http://www.jos.org.cn/
1000-9825/4598.htm [doi: 10.13328/ j.cnki.jos.004598]
[5] 付晓东,邹平,姜瑛.基于质量相似度的 Web 服务信誉度量.计算机集成制造系统,2008,14(3):619−624. [doi: 10.13196/j.cims.2008.
03.205.fuxd.010]
[8] 王刚,蒋军,王含茹,等.基于联合概率矩阵分解的群推荐方法研究.计算机学报,2019,42(1):98−110.
[9] 付晓东,郑苏苏,岳昆,等.一种基于 Kendall tau 距离的在线服务信誉度量方法.计算机研究与发展,2019,56(4):884−894.
[18] 吕品,钟珞,唐琨皓.在线产品评论用户满意度综合评价研究.电子学报,2014,42(4):740−746.
[19] 王玉祥,乔秀全,李晓峰,等.上下文感知的移动社交网络服务选择机制研究.计算机学报,2010,33(11):2126−2135.
赵时海(1993-),女,博士生,CCF 学生会 刘骊(1979-),女,博士,教授,CCF 高级会
员,主要研究领域为服务计算. 员,主要研究领域为服务计算,智能家居.
付晓东(1975-),男,博士,教授,博士生导 冯勇(1975-),男,博士,教授,CCF 专业会
师,CCF 高级会员,主要研究领域为服务计 员,主要研究领域为物联网服务.
算,智能决策.
岳昆(1979-),男,博士,教授,博士生导师, 刘利军(1978-),男,副教授,CCF 专业会
CCF 高级会员,主要研究领域为人工智能, 员,主要研究领域为服务计算,移动医疗.
服务计算.