Page 77 - 《软件学报》2021年第11期
P. 77

赵时海  等:用户群体满意度最大化的 Top-k 在线服务评价                                                 3403


                [21]    Liu Y,  Zhang  J, Zhu QY,  et  al.  CONGRESS:  A hybrid reputation system  for  coping  with rating subjectivity. IEEE  Trans. on
                     Computational Social Systems, 2017,4(3):163−178.
                [22]    Brandt F, Conitzer V, Endriss U, et al. Handbook of Computational Social Choice. Cambridge: Cambridge University Press, 2016.
                [23]    Elkind E, Faliszewski P, Skowron P, et al. Properties of multiwinner voting rules. Social Choice and Welfare, 2017,48(3):599−632.
                [24]    Procaccia AD, Rosenschein JS, Zohar A. On the complexity of achieving proportional representation. Social Choice and Welfare,
                     2008,30(3):353−362.
                [25]    Freixas J,  Zwicker WS. Weighted voting,  abstention,  and  multiple levels of  approval. Social  Choice  and Welfare, 2003,21(3):
                     399−431.
                [26]    Elkind E, Markakis E, Obraztsova S, et al. Complexity of finding equilibria of plurality voting under structured preferences. In:
                     Proc. of the 2016 Int’l Conf. on Autonomous Agents & Multiagent Systems. Singapore, 2016. 394−401.
                [27]    Skowron P, Faliszewski P, Slinko A. Axiomatic characterization of committee scoring rules. Journal of Economic Theory, 2019,
                     180:244−273. [doi: 10.1016/j.jet.2018.12.011]
                [28]    Kamishima T. Nantonac collaborative filtering: Recommendation based on order responses. In: Proc. of the 9th ACM SIGKDD
                     Int’l Conf. on Knowledge Discovery and Data Mining. New York, 2003. 583−588.
                [29]    Hwang WS, Lee HJ, Kim SW, et al. Efficient recommendation  methods using  category  experts for  a large  dataset. Information
                     Fusion, 2016,28:75−82. [doi: 10.1016/j.inffus.2015.07.005]
                [30]    Lu T, Boutilier C. Effective sampling and learning for Mallows models with pairwise-preference data. Journal of Machine Learning
                     Research, 2014,15(1):3783−3829.
                [31]    Fernández-Tobías I, Cantador I, Tomeo P, et al. Addressing the user cold start with cross-domain collaborative filtering: exploiting
                     item  metadata in matrix factorization. User  Modeling and User-adapted Interaction,  2019,29(2):443−486. [doi: 10.1007/s11257-
                     018-9217-6]

                 附中文参考文献:
                  [4]  白琳,叶丹,魏峻,黄涛.一种高效的基于服务功能规约的服务选择方法.软件学报,2015,26(8):1886−1906. http://www.jos.org.cn/
                     1000-9825/4598.htm [doi: 10.13328/ j.cnki.jos.004598]
                  [5]  付晓东,邹平,姜瑛.基于质量相似度的 Web 服务信誉度量.计算机集成制造系统,2008,14(3):619−624. [doi: 10.13196/j.cims.2008.
                     03.205.fuxd.010]
                  [8]  王刚,蒋军,王含茹,等.基于联合概率矩阵分解的群推荐方法研究.计算机学报,2019,42(1):98−110.
                  [9]  付晓东,郑苏苏,岳昆,等.一种基于 Kendall tau 距离的在线服务信誉度量方法.计算机研究与发展,2019,56(4):884−894.
                 [18]  吕品,钟珞,唐琨皓.在线产品评论用户满意度综合评价研究.电子学报,2014,42(4):740−746.
                 [19]  王玉祥,乔秀全,李晓峰,等.上下文感知的移动社交网络服务选择机制研究.计算机学报,2010,33(11):2126−2135.


                              赵时海(1993-),女,博士生,CCF 学生会                     刘骊(1979-),女,博士,教授,CCF 高级会
                              员,主要研究领域为服务计算.                               员,主要研究领域为服务计算,智能家居.





                              付晓东(1975-),男,博士,教授,博士生导                      冯勇(1975-),男,博士,教授,CCF 专业会
                              师,CCF 高级会员,主要研究领域为服务计                        员,主要研究领域为物联网服务.
                              算,智能决策.



                              岳昆(1979-),男,博士,教授,博士生导师,                     刘利军(1978-),男,副教授,CCF 专业会
                              CCF 高级会员,主要研究领域为人工智能,                        员,主要研究领域为服务计算,移动医疗.
                              服务计算.
   72   73   74   75   76   77   78   79   80   81   82