Page 76 - 《软件学报》2021年第11期
P. 76

3402                                Journal of Software  软件学报 Vol.32, No.11, November 2021

                 在线服务评价方法.该方法考虑了用户评价准则不一致的问题,首先将用户群体满意度作为指标以衡量在线服
                 务能否被选择,然后将 Top-k 在线服务评价问题转化为基于 Monroe 规则的分配最优化问题,再采用贪心算法寻
                 找最大化群体满意度的 k 个服务作为的 Top-k 在线服务评价结果.通过理论分析和实验验证,表明了该方法的合
                 理性、有效性及高效性.另外,方法在用户提供完整的偏好排序或用户只提交完整排序比例仅为 10%的 Top-t 服
                 务这两种情况下,均可得到较高的用户群体满意度.
                    未来工作中,将探索评价模型的增量更新算法,以在上一次评价结果的基础上,结合新的信息变化,快速获
                 取评价结果.同时,还将对模型的抗操纵性进行分析,并提出针对性的抗操纵方法.

                 References:
                 [1]    Jøsang A,  Ismail R, Boyd C. A  survey  of  trust and  reputation systems for  online  service provision. Decision  Support  Systems,
                     2007,43(2):618−644. [doi: 10.1016/j.dss.2005.05.019]
                 [2]    Zhang XZ, Cui LS, Wang Y. CommTrust: Computing multi-dimensional trust by mining E-commerce feedback comments. IEEE
                     Trans. on Knowledge and Data Engineering, 2014,26(7):1631−1643. [doi: 10.1109/TKDE.2013.177]
                 [3]    Wang M, Wang GL, Zhang YJ, et al. A high-reliability multi-faceted reputation evaluation mechanism for online services. IEEE
                     Trans. on Services Computing, 2019,12(6):836−850. [doi: 10.1109/tsc.2016.2638812]
                 [4]    Bai L, Ye D, Wei J, Huang T. Efficient service selection approach based on functionality folding. Ruan Jian Xue Bao/Journal of
                     Software, 2015,26(8):1886−1906 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4598.htm [doi: 10.13328/j.
                     cnki.jos.004598]
                 [5]    Fu XD,  Zou P, Jiang Y.  Web service reputation  measurement based  on quality of service similarity.  Computer Integrated
                     Manufacturing Systems, 2008,14(3):619−624 (in Chinese with English abstract). [doi: 10.13196/j.cims.2008.03.205.fuxd.010]
                 [6]    Bhargava K, Gujral T, Chawla M, et al. Comment based seller trust model for e-commerce. In: Proc. of the 2016 Int’l Conf. on
                     Computational Techniques in Information & Communication Technologies. New Delhi, 2016. 387−391.
                 [7]    Chakraborty A, Patro GK, Ganguly N, et al. Equality of voice: Towards fair representation in crowdsourced top-k recommendations.
                     In: Proc. of the Conf. on Fairness, Accountability, and Transparency. New York, 2019. 129−138.
                 [8]    Wang G, Jiang J, Wang HR, et al. Study of group recommendation based on probabilistic matrix factorization. Chinese Journal of
                     Computers, 2019,42(1):98−110 (in Chinese with English abstract).
                 [9]    Fu XD, Zheng SS, Yue K, et al. Online service reputation measurement method based on Kendall tau distance. Journal of Computer
                     Research and Development, 2019,56(4):884−894 (in Chinese with English abstract).
                [10]    Fu XD, Yue K, Liu L, et al. Aggregating ordinal user preferences for effective reputation computation of online services. In: Proc.
                     of the 23rd IEEE Int’l Conf. on Web Services. San Francisco, 2016. 554−561.
                [11]    Fu X, Yue K, Liu L, et al. Reputation measurement for online services based on dominance relationships. IEEE Trans. on Services
                     Computing, 2021,14(4):1054−1067.
                [12]    Monroe BL. Fully proportional representation. American Political Science Review, 1995,89(4):925−940.
                [13]    Skowron P, Faliszewski P, Slinko A. Achieving fully proportional representation: Approximability results. Artificial Intelligence,
                     2015,222:67−103. [doi: 10.1016/j.artint.2015.01.003]
                [14]    Baumeister D,  Faliszewski  P, Lang J,  et  al.  Campaigns for lazy voters:  Truncated ballots.  In: Proc. of the 11th Int’l  Conf. on
                     Autonomous Agents and Multiagent Systems. Valencia, 2012. 577−584.
                [15]    McAuley J, Leskovec J. Hidden factors and hidden topics: Understanding rating dimensions with review text. In: Proc. of the 7th
                     ACM Conf. on Recommender Systems. New York, 2013. 165−172.
                [16]    Hsieh HY, Wu SH. Ranking online customer reviews with the SVR model. In: Proc. of the 2015 IEEE Int’l Conf. on Information
                     Reuse and Integration. San Francisco, 2015. 550−555.
                [17]    Gangothri V, Saranya S, Venkataraman D. Engender product ranking and recommendation using customer feedback. In: Proc. of
                     the Int’l Conf. on Soft Computing Systems. India: Springer-Verlag, 2016. 851−859. [doi: 10.1007/978-81-322-2671-0_80]
                [18]    Lü P, Zhong L, Tang KH. Customer satisfaction degree evaluation of online product review. Acta Electronica Sinica, 2014,42(4):
                     740−746 (in Chinese with English abstract).
                [19]    Wang YX, Qiao XQ, LI XF, et al. Research on context-awareness mobile SNS service selection mechanism. Chinese Journal of
                     Computers, 2010,33(11):2126−2135 (in Chinese with English abstract).
                [20]    Li  W, Sun  QB,  Wang SG.  Context-based  Web service  reputation  measurement. In: Proc. of  the 2014  IEEE 17th Int’l  Conf. on
                     Computational Science and Engineering. Chengdu, 2014. 1489−1496.
   71   72   73   74   75   76   77   78   79   80   81