Page 53 - 摩擦学学报2025年第5期
P. 53
第 5 期 韩振宇, 等: 不同运行参数下珠光体与贝氏体钢轨钢滚动磨损与接触疲劳行为研究 687
wear.2018.12.049. contact fatigue behaviours of defective rail under different slip ratio
[ 7 ] Devanathan R, Clayton P. Rolling-sliding wear behavior of three and contact stress conditions[J]. Tribology International, 2022, 169:
bainitic steels[J]. Wear, 1991, 151(2): 255–267. doi: 10.1016/0043- 107491. doi: 10.1016/j.triboint.2022.107491.
1648(91)90253-q. [15] Al-Juboori A, Zhu H, Wexler D, et al. Characterisation of White
[ 8 ] Kalousek J, Fegredo D M, Laufer E E. The wear resistance and worn Etching Layers formed on rails subjected to different traffic
metallography of pearlite, bainite and tempered martensite rail steel conditions[J]. Wear, 2019, 436–437: 202998. doi:10.1016/j.wear.
microstructures of high hardness[J]. Wear, 1985, 105(3): 199–222. 2019.202998.
doi: 10.1016/0043-1648(85)90068-7. [16] Al-Juboori A, Zhu H, Wexler D, et al. Evolution of rail surface
[ 9 ] Chen Yuda, Ren Ruiming, Pan Jinzhi, et al. Microstructure degradation in the tunnel: the role of water on squat growth under
evolution of rail steels under different dry sliding conditions: a service conditions[J]. Engineering Fracture Mechanics, 2019, 209:
comparison between pearlitic and bainitic microstructures[J]. Wear, 32–47. doi: 10.1016/j.engfracmech.2019.01.018.
2019, 438–439: 203011. doi:10.1016/j.wear.2019.203011. [17] He Chenggang. Study on tribo-fatigue damage mechanism and
[10] Hu Y, Guo L C, Maiorino M, et al. Comparison of wear and rolling microstructure evolution behaviors of wheel materials[D]. Chengdu:
contact fatigue behaviours of bainitic and pearlitic rails under Southwest Jiaotong University, 2018 (in Chinese) [何成刚. 车轮材
various rolling-sliding conditions[J]. Wear, 2020, 460–461: 203455. 料摩擦疲劳损伤机理及微观组织演变行为研究[D]. 成都: 西南交
doi:10.1016/j.wear.2020.203455. 通大学, 2018].
[11] He C G, Guo J, Liu Q Y, et al. Experimental investigation on the [18] Zhong Wen, Dong Lin, Wang Yu, et al. A comparative investigation
effect of operating speeds on wear and rolling contact fatigue between rolling contact fatigue and wear of high-speed and heavy-
damage of wheel materials[J]. Wear, 2016, 364–365: 257–269. haul railway[J]. Tribology, 2012, 32(1): 96–101 (in Chinese) [钟雯,
doi:10.1016/j.wear.2016.08.006. 董霖, 王宇, 等. 高速与重载铁路的疲劳磨损对比研究[J]. 摩擦学
[12] Zhang S Y, Ding H H, Lin Q, et al. Experimental study on wheel- 学报, 2012, 32(1): 96–101]. doi: 10.16078/j.tribology.2012.01.016.
rail rolling contact fatigue damage starting from surface defects [19] Wang H H, Wang W J, Han Z Y, et al. Wear and rolling contact
under various operational conditions[J]. Tribology International, fatigue competition mechanism of different types of rail steels under
2023, 181: 108324. doi: 10.1016/j.triboint.2023.108324. various slip ratios[J]. Wear, 2023, 522: 204721. doi: 10.1016/j.wear.
[13] Zhu Wentao. Study on wear mappping and wear transition 2023.204721.
mechansim of CL60 wheel material[D]. Chengdu: Southwest [20] Zhang S Y, Zhao H Y, Ding H H, et al. Effect of vibration amplitude
Jiaotong University, 2018 (in Chinese) [朱文涛. CL60车轮材料磨 and axle load on the rail rolling contact fatigue under water
损图与磨损转变机制研究[D]. 成都: 西南交通大学, 2018]. condition[J]. International Journal of Fatigue, 2023, 167: 107329.
[14] Zhang S Y, Spiryagin M, Lin Q, et al. Study on wear and rolling doi: 10.1016/j.ijfatigue.2022.107329.