Page 81 - 摩擦学学报2025年第4期
P. 81
第 4 期 于文峰, 等: 高速列车用闸片摩擦学行为与磨损寿命研究 569
擦系数主要分布在0.40~0.44之间,具有一定的波动性. 40 擦材料性能的影响[J]. 粉末冶金技术, 2018, 36(2): 83–88]. doi: 10.
和80次循环试验后,销的磨损表面形貌相似,均存在 19591/j.cnki.cn11-1974/tf.2018.02.001.
[ 6 ] Han Xiaoming, Gao Fei, Song Baoyun, et al. Effect of friction speed
大量犁沟、凹坑、增强组元破碎、氧化物附着和边缘
on friction and wear performance of Cu-matrix friction materials[J].
剥落现象.
Tribology, 2009, 29(1): 89–96 (in Chinese) [韩晓明, 高飞, 宋宝韫,
b. 随着循环试验次数的增加,销(闸片)的磨损表
等. 摩擦速度对铜基摩擦材料摩擦磨损性能影响[J]. 摩擦学学报,
面摩擦层的厚度和连续性增强. 80次循环试验后,环 2009, 29(1): 89–96]. doi: 10.3321/j.issn:1004-0595.2009.01.015.
表面存在富集Cu和Cr的厚度不均的摩擦层,沿着摩擦 [ 7 ] Tian Siguang, You Xianqing, Zhong Chengshan, et al. The current
滑动方向存在条形附着物以及大量的犁沟. and future research of oxides formed in the course of thermal wear
c. 闸片350 km/h条件主要发生磨粒磨损和黏着磨 of metal composites[J]. Rare Metals and Cemented Carbides, 2007,
35(4): 46–50 (in Chinese) [田四光, 尤显卿, 钟成山, 等. 金属基复
损,在循环剪切应力和压应力作用下增强组元会发生
合材料热磨损过程中氧化物的研究现状及展望[J]. 稀有金属与硬
破碎脱落,尤其是紧邻石墨组元的增强组元. 摩擦界
质合金, 2007, 35(4): 46–50]. doi: 10.3969/j.issn.1004-0536.2007.
面之间存在大量粒状磨屑,造成严重的磨料磨损. 磨
04.012.
屑颗粒可能脱离摩擦界面、储存在闸片表面低洼处或 [ 8 ] Zhang Peng, Zhang Lin, Fu Kangxi, et al. The effect of Al 2 O 3 fiber
压实成摩擦层. 在剪切力、磨屑的犁削以及摩擦副的 additive on braking performance of copper-based brake pads utilized
黏着作用下,表面的摩擦层会经历去除和生成的过程. in high-speed railway train[J]. Tribology International, 2019, 135:
d. 使用小型(实验室级别)设备,采取一定的试验 444–456. doi: 10.1016/j.triboint.2019.03.034.
[ 9 ] Yu Wenfeng, Gao Siyang, Wang Xu, et al. Investigation on the
参数选取原则,可使其试验结果与1:1制动试验台之间
effect mechanism of oxidation on the tribological performance of
具有一定的可对比性;闸片在350 km/h速度水平下平
cast steel/copper matrix composite[J]. Tribology International, 2024,
均摩擦耗散能为0.113 cm /MJ,接近于铁科院提供的
3
191: 109156. doi: 10.1016/j.triboint.2023.109156.
1:1制动试验台的测试结果0.14 cm /MJ;经计算闸片 [10] Zhang Peng, Zhang Lin, Wei Dongbin, et al. Substance evolution
3
的磨损寿命为192次,对应实际工况350 km/h速度条 and wear mechanism on friction contact area of brake disc for high-
件下的紧急制动341次. speed railway trains at high temperature[J]. Engineering Failure
Analysis, 2020, 111: 104472. doi: 10.1016/j.engfailanal.2020.
参 考 文 献
104472.
[ 1 ] Xu Zhuoyuan, Zhong Min, Xu Wenhu, et al. Effects of [11] Zhang Xin, Zhang Yongzhen, Du Sanming, et al. Study on the
aluminosilicate particles on tribological performance and friction tribological performance of copper-based powder metallurgical
mechanism of Cu-matrix pads for high-speed trains[J]. Tribology friction materials with Cu-coated or uncoated graphite particles as
International, 2023, 177: 107983. doi: 10.1016/j.triboint.2022. lubricants[J]. Materials, 2018, 11(10): 2016. doi: 10.3390/
107983. ma11102016.
[ 2 ] Ma Lei, Ding Siyuan, Zhang Chao, et al. Study on the wear [12] Zhao Jianhua, Li Pu, Tang Qi, et al. Influence of metal-coated
performance of high-speed railway brake materials at low graphite powders on microstructure and properties of the bronze-
temperatures under continuous braking conditions[J]. Wear, 2023, matrix/graphite composites[J]. Journal of Materials Engineering and
512–513: 204556. doi:10.1016/j.wear.2022.204556. Performance, 2017, 26(2): 792–801. doi: 10.1007/s11665-016-2495-4.
[ 3 ] Qing Sanhui, Li Xuemei, Qing Guanghui. Development and [13] Zou Haohao, Ran Xu, Zhu Weiwei, et al. Tribological behavior of
technical innovation of China’s high-speed railway[J]. High Speed Copper-Graphite composites reinforced with Cu-coated or uncoated
Railway Technology, 2014, 5(1): 1–7 (in Chinese) [卿三惠, 李雪梅, SiO₂ particles[J]. Materials, 2018, 11(12): 2414. doi: 10.3390/
卿光辉. 中国高速铁路的发展与技术创新[J]. 高速铁路技术, ma11122414.
2014, 5(1): 1–7]. doi: 10.3969/j.issn.1674-8247.2014.01.001. [14] Hu Ming, Zhang Yunlong, Tang Lili, et al. Surface modifying of
[ 4 ] Peng Tao, Yan Qingzhi, Li Gen, et al. The braking behaviors of Cu- SiC particles and performance analysis of SiCp/Cu composites[J].
based metallic brake pad for high-speed train under different initial Applied Surface Science, 2015, 332: 720–725. doi: 10.1016/j.
braking speed[J]. Tribology Letters, 2017, 65(4): 135. doi: 10.1007/ apsusc.2015.01.130.
s11249-017-0914-9. [15] Yao Pingping, Xiong Xiang, Li Shipeng, et al. The effects of alloy
[ 5 ] Liu Lianjun, Li Li, Wu Qijun, et al. Effects of braking velocity on elements Zn/Ni on the properties of copper-based brake materials[J].
friction properties of Cu-based Powder metallurgy friction Lubrication Engineering, 2006, 31(4): 1–3,22 (in Chinese) [姚萍屏,
material[J]. Powder Metallurgy Technology, 2018, 36(2): 83–88 (in 熊翔, 李世鹏, 等. 合金元素锌/镍对铜基粉末冶金刹车材料的影
Chinese) [刘联军, 李利, 吴其俊, 等. 刹车速度对铜基粉末冶金摩 响[J]. 润滑与密封, 2006, 31(4): 1–3,22]. doi: 10.3969/j.issn.0254-