Page 84 - 摩擦学学报2025年第4期
P. 84
572 摩擦学学报(中英文) 第 45 卷
lubricating oil as the secondary lubricating medium to temporarily inject it into the contact region when water-lubricated
bearings encounter severe working conditions, so as to improve the bearing capacity of water-lubricated bearings and
achieve the purpose of temporary risk aversion. In our previous work, this proposed idea had been proved to have a
remarkable improvement in bearing capacity and a reduction in friction and wear of water-lubricated bearings, thereby
achieving temporary risk aversion.
In the current work, emulsifying oil was selected as the secondary lubricating medium, and the MRH-3 high-speed
block-on-ring test rig was used to evaluate the friction and wear performance of Thordon material under different
working conditions with the lubrication of pure water and water with a small quantity of secondary lubricating oil,
complemented by CFD simulations to elucidate the underlying mechanisms. Meanwhile, the difference of wear surfaces
of different material test blocks was observed and analyzed by the conformal microscope. Results showed that when the
oil supply quantity, oil supply rate and the applied load were kept unchanged, the friction coefficient of the Thordon
material changed with different ring rotational speeds after the injection of a small quantity of emulsifying oil in the
water environment. Results obtained from CFD simulations conducted over a 10-minute duration confirmed that oil film
remained adhered to the ring surface to participate the lubrication even after the oil injection was ceased. Compared with
the surface observation of the Thordon test blocks under different working conditions from the conformal microscope,
the surface wear track width of the Thordon material gradually increased with the increase of the applied load and the
ring rotational speeds. It was also found that the width of wear tracks of the Thordon material was wider than that of the
NBR material under the same working conditions after the injection of the emulsifying oil. The current research work
could provide the data support for the selection of materials of water-lubricated bearings.
Key words: water lubrication; secondary lubricating medium; friction and wear reduction; Thordon material; CFD
simulation
[16]
作为机械装备中传动系统的核心部件,滑动轴承 低摩擦系数,提高其耐磨性. Hu等 的试验研究表明,凸
对整机系统的运行能力与可靠性都至关重要. 传统的 球形织构表面的排屑能力不仅可以增强水流的空化和
油润滑轴承存在润滑油泄漏问题,严重破坏生态环 楔形效应,还对水润滑轴承的摩擦学性能产生一定影响.
[1]
境 . 相比之下,水润滑轴承则具有成本低、散热效果 在上述研究领域之外,探寻提高水润滑轴承摩擦
好以及环境友好等优点,在轮船、舰艇等海洋装备中 学性能的方法无疑是1种有益的途径. 因此,本课题组
已经得到广泛应用 [2-3] . 然而,由于水的低黏度,在恶劣 提出了1种新的方法,即以微量润滑油作为第二辅助
[4]
工况下水润滑轴承的承载能力会受到影响 . 润滑介质,通过在水润滑轴承遭遇苛刻工况时使其临
国内外学者已对轴套结构、耐磨减摩轴承材料以 时注入接触区域,以提高水润滑轴承的承载能力,从
及轴承摩擦噪音机理等进行了深入研究 [5-8] . 水润滑轴 而延长其服役寿命. 实验室已对该控制方法在橡胶材
承的衬套材料需要具备多方面的性能,包括较强的抗 料上的减摩抗磨效果进行了深入研究 [17-21] . 鉴于赛龙
冲击性、较大的承载能力、良好的亲水性和自润滑性 材料在水润滑轴承中的广泛应用,本文中在此基础上
能,同时还需具备耐磨、耐腐性以及对磨粒的嵌藏性. 将橡胶材料试块替换为赛龙(SXL型号)材料试块,利
常用的水润滑轴承材料包括天然材料如铁梨木、橡胶 用MRH-3高速环块摩擦磨损试验机、共聚焦显微镜和
材料以及复合聚合物材料等. 例如,Orndorff等 开发 CFD仿真等方法,探究了赛龙材料微量第二润滑介质
[9]
[10]
了SPA橡-塑复合轴承材料,王家序等 研制了BTG塑 增强水润滑的摩擦学特性,为水润滑轴承材料的选择
[11]
料合金材料,而Qin等 则推出了SPB-N产品. 提供数据支持.
除材料选择外,结构设计对改善水润滑轴承的耐
磨减摩特性也具有重要影响. 这包括轴向沟槽尺寸及 1 试验部分
数量对水润滑轴承稳定性的影响 ,水润滑轴承静态 1.1 试验材料
[12]
和动态特性计算 ,以及轴的偏斜等因素对润滑特性 试验所用的钢环与试块分别为316不锈钢材质与赛
[13]
的影响 . 近年来,表面织构技术在提高水润滑轴承 龙(SXL)材料,试验所使用材料具体参数列于表1中.
[14]
摩擦副表面的润滑性和耐磨性方面取得了显著进展. 1.2 试验条件及方法
[15]
例如,Lan等 将微织构应用于某种先进的轴承聚合物 在前期研究中,已经证实微量乳化油对环块试验
材料上,试验证明在边界润滑条件下,微织构能有效降 机的减摩抗磨效果 [18-21] . 在本研究中,延续了该乳化油