Page 56 - 《摩擦学学报》2021年第5期
P. 56
第 5 期 李纪强, 等: 齿轮传动微点蚀与热胶合竞争性失效机制研究 645
机现象造成的,因此,在工程应用上,考虑偏载、冲击、 油炼制与化工, 2018, 49(1): 70–74]. doi: 10.3969/j.issn.1005-2399.
油液质变等多因素影响,微点蚀校核应留有足够余 2018.01.014.
[ 9 ] Zhang Meiqiong, Zhang Xialing, Wang Kaiming, et al. Summary of
量,结合试验分析与工程经验,微点蚀设计润滑油膜
influence factors on anti-micropitting property of wind gear oil[J].
最小安全系数取为2.00是较为合理的.
Refining and Chemical Industry, 2018, 29(6): 4–5 (in Chinese) [张
e. 对于本文中所用18CrNiMo7-6材料+普通矿物
美琼, 张霞玲, 王凯明, 等. 风电齿轮油抗微点蚀性能的影响因素
油+齿面磨削组合设计的齿轮传动,在本文中所推荐 综述[J]. 炼油与化工, 2018, 29(6): 4–5]. doi: 10.16049/j.cnki.lyyhg.
的计算方法体系下,其齿面热胶合发生温度约为220 ℃, 2018.06.002.
在油膜厚度变化不大的情况下波动较小,可作为工程 [10] Xu X Y, Lai J B, Lohmann C, et al. A model to predict initiation and
应用抗胶合承载能力精准设计的数据参考,此时,对 propagation of micro-pitting on tooth flanks of spur gears[J].
于热胶合承载能力校核,齿面啮合温度最小安全系数 International Journal of Fatigue, 2019, 122: 106–115. doi: 10.1016/j.
ijfatigue.2019.01.004.
选为1.20是合理的,可大大降低设计余量.
[11] Bergseth E, Sjöberg S, Björklund S. Influence of real surface
参 考 文 献 topography on the contact area ratio in differently manufactured spur
gears[J]. Tribology International, 2012, 56: 72–80. doi: 10.1016/
[ 1 ] Wang Wei, Liu Huaiju, Zhu Caichao, et al. Evaluation of contact
j.triboint.2012.06.014.
fatigue life of a wind turbine carburized gear considering gradients
[12] Nakanishi T, Ariura Y, Ueno T. Load-carrying capacity of surface-
of mechanical properties[J]. International Journal of Damage
hardened gears. Influence of surface roughness on surface
Mechanics, 2019, 28(8): 1170–1190. doi: 10.1177/1056789518814284.
durability[J]. JSME International Journal, 1987, 30(259): 161–167.
[ 2 ] Zhang Boyu, Liu Huaiju, Bai Houyi, et al. Ratchetting-multiaxial
doi: 10.1299/jsme1987.30.161.
fatigue damage analysis in gear rolling contact considering tooth
[13] Sjöberg S, Björklund S, Olofsson U. The influence of manufacturing
surface roughness[J]. Wear, 2019, 428-429: 137–146. doi: 10.1016/j.
method on the running-in of gears[J]. Proceedings of the Institution
wear.2019.03.003.
of Mechanical Engineers, Part J:Journal of Engineering Tribology,
[ 3 ] Zargarian A, Esfahanian M, Kadkhodapour J, et al. On the fatigue
2011, 225(10): 999–1012. doi: 10.1177/1350650111414471.
behavior of additive manufactured lattice structures[J]. Theoretical
[14] Evans H P, Snidle R W, Sharif K J, et al. Analysis of micro-
and Applied Fracture Mechanics, 2019, 100: 225–232. doi: 10.1016/
elastohydrodynamic lubrication and prediction of surface fatigue
j.tafmec.2019.01.012.
damage in micropitting tests on helical gears[J]. Journal of
[ 4 ] Britton R D, Elcoate C D, Alanou M P, et al. Effect of surface finish
Tribology, 2013, 135(1): 011501. doi: 10.1115/1.4007693.
on gear tooth friction[J]. Journal of Tribology, 2000, 122(1):
354–360. doi: 10.1115/1.555367. [15] Höhn B -R, Michaelis K. Influence of oil temperature on gear
[ 5 ] Krantz T L, Alanou M P, Evans H P, et al. Surface fatigue lives of failures[J]. Tribology International, 2004, 37(2): 103–109. doi: 10.
case-carburized gears with an improved surface finish[J]. Journal of 1016/S0301-679X(03)00047-1.
Tribology, 2001, 123(4): 709–716. doi: 10.1115/1.1387036. [16] Shaw B, Zhang J S. Gear failure investigation methods[R]. Report of
th
[ 6 ] Xiong Yongqiang, Sun Yizhong, Zhang Hechao. Calculation of the 4 CGMA Gear Testing and Inspection Seminar and Training.
micro-pitting load capacity of gears for wind power based on Beijing, 2018.
elastohydrodynamic lubrication contact theory[J]. Journal of [17] Alanou M P, Evans H P, Snidle R W. Effect of different surface
Chongqing University, 2015, 38(1): 126–132 (in Chinese) [熊永强, treatments and coatings on the scuffing performance of hardened
孙义忠, 张合超. 采用热弹流润滑理论数值计算的风电齿轮微点 steel discs at very high sliding speeds[J]. Tribology International,
蚀承载能力分析[J]. 重庆大学学报, 2015, 38(1): 126–132]. doi: 10. 2004, 37(2): 93–102. doi: 10.1016/S0301-679X(03)00039-2.
11835/j.issn.1000-582X.2015.01.017. [18] Wang Songnian, Su Yifu, Li Manlin, et al. The relative test and
[ 7 ] Xue Jianhua, Li Wei. Research on gear system scuffing load investigation in scoring load capacity of gears[J]. Journal of Dalian
capacity and its numerical calculation methods[J]. Transactions of Railway Institute, 1986, 3: 89–101 (in Chinese) [王松年, 苏诒福, 李
Beijing Institute of Technology, 2014, 34(9): 901–906 (in Chinese) 曼林, 等. 齿轮胶合承载能力的对比试验研究[J]. 大连铁道学院学
[薛建华, 李威. 齿轮热胶合承载能力数值计算方法研究[J]. 北京 报, 1986, 3: 89–101].
理工大学学报, 2014, 34(9): 901–906]. doi: 10.15918/j.tbit1001-0645. [19] Jian Guangxiao, Wang Youqiang, Luo Heng, et al. Thermal
2014.09.026. elastohydrodynamic lubrication of X-gears system based on time-
[ 8 ] Yao Yuanpeng, Li Xiaogang, Zhou Kang, et al. Influence of S-P varying meshing stiffness[J]. Tribology, 2020, 40(1): 21–29
type anti-wear agents on anti-micropitting[J]. Petroleum Processing (in Chinese) [菅光霄, 王优强, 罗恒, 等. 基于时变啮合刚度的变位
And Petrochemicals, 2018, 49(1): 70–74 (in Chinese) [姚元鹏, 李小 齿轮系统热弹流润滑研究[J]. 摩擦学学报, 2020, 40(1): 21–29].
刚, 周康, 等. 硫-磷型抗磨剂对齿轮油抗微点蚀性能的影响[J]. 石 doi: 10.16078/j.tribology.2019097.