Page 56 - 《摩擦学学报》2021年第5期
P. 56

第 5 期                     李纪强, 等: 齿轮传动微点蚀与热胶合竞争性失效机制研究                                       645

            机现象造成的,因此,在工程应用上,考虑偏载、冲击、                              油炼制与化工, 2018, 49(1): 70–74]. doi: 10.3969/j.issn.1005-2399.
            油液质变等多因素影响,微点蚀校核应留有足够余                                 2018.01.014.
                                                               [  9  ]  Zhang Meiqiong, Zhang Xialing, Wang Kaiming, et al. Summary of
            量,结合试验分析与工程经验,微点蚀设计润滑油膜
                                                                   influence factors on anti-micropitting property of wind gear oil[J].
            最小安全系数取为2.00是较为合理的.
                                                                   Refining and Chemical Industry, 2018, 29(6): 4–5 (in Chinese) [张
                e. 对于本文中所用18CrNiMo7-6材料+普通矿物
                                                                   美琼, 张霞玲, 王凯明, 等. 风电齿轮油抗微点蚀性能的影响因素
            油+齿面磨削组合设计的齿轮传动,在本文中所推荐                                综述[J]. 炼油与化工, 2018, 29(6): 4–5]. doi: 10.16049/j.cnki.lyyhg.
            的计算方法体系下,其齿面热胶合发生温度约为220 ℃,                            2018.06.002.
            在油膜厚度变化不大的情况下波动较小,可作为工程                            [10]  Xu X Y, Lai J B, Lohmann C, et al. A model to predict initiation and
            应用抗胶合承载能力精准设计的数据参考,此时,对                                propagation  of  micro-pitting  on  tooth  flanks  of  spur  gears[J].
            于热胶合承载能力校核,齿面啮合温度最小安全系数                                International Journal of Fatigue, 2019, 122: 106–115. doi: 10.1016/j.
                                                                   ijfatigue.2019.01.004.
            选为1.20是合理的,可大大降低设计余量.
                                                               [11]  Bergseth  E,  Sjöberg  S,  Björklund  S.  Influence  of  real  surface
            参 考 文 献                                                topography on the contact area ratio in differently manufactured spur
                                                                   gears[J].  Tribology  International,  2012,  56:  72–80.  doi:  10.1016/
            [  1  ]  Wang  Wei,  Liu  Huaiju,  Zhu  Caichao,  et  al.  Evaluation  of  contact
                                                                   j.triboint.2012.06.014.
                 fatigue life of a wind turbine carburized gear considering gradients
                                                               [12]  Nakanishi T, Ariura Y, Ueno T. Load-carrying capacity of surface-
                 of  mechanical  properties[J].  International  Journal  of  Damage
                                                                   hardened  gears.  Influence  of  surface  roughness  on  surface
                 Mechanics, 2019, 28(8): 1170–1190. doi: 10.1177/1056789518814284.
                                                                   durability[J]. JSME International Journal, 1987, 30(259): 161–167.
            [  2  ]  Zhang  Boyu,  Liu  Huaiju,  Bai  Houyi,  et  al.  Ratchetting-multiaxial
                                                                   doi: 10.1299/jsme1987.30.161.
                 fatigue  damage  analysis  in  gear  rolling  contact  considering  tooth
                                                               [13]  Sjöberg S, Björklund S, Olofsson U. The influence of manufacturing
                 surface roughness[J]. Wear, 2019, 428-429: 137–146. doi: 10.1016/j.
                                                                   method on the running-in of gears[J]. Proceedings of the Institution
                 wear.2019.03.003.
                                                                   of Mechanical Engineers, Part J:Journal of Engineering Tribology,
            [  3  ]  Zargarian A, Esfahanian M, Kadkhodapour J, et al. On the fatigue
                                                                   2011, 225(10): 999–1012. doi: 10.1177/1350650111414471.
                 behavior  of  additive  manufactured  lattice  structures[J].  Theoretical
                                                               [14]  Evans  H  P,  Snidle  R  W,  Sharif  K  J,  et  al.  Analysis  of  micro-
                 and Applied Fracture Mechanics, 2019, 100: 225–232. doi: 10.1016/
                                                                   elastohydrodynamic  lubrication  and  prediction  of  surface  fatigue
                 j.tafmec.2019.01.012.
                                                                   damage  in  micropitting  tests  on  helical  gears[J].  Journal  of
            [  4  ]  Britton R D, Elcoate C D, Alanou M P, et al. Effect of surface finish
                                                                   Tribology, 2013, 135(1): 011501. doi: 10.1115/1.4007693.
                 on  gear  tooth  friction[J].  Journal  of  Tribology,  2000,  122(1):
                 354–360. doi: 10.1115/1.555367.               [15]  Höhn  B  -R,  Michaelis  K.  Influence  of  oil  temperature  on  gear
            [  5  ]  Krantz T L, Alanou M P, Evans H P, et al. Surface fatigue lives of  failures[J]. Tribology International, 2004, 37(2): 103–109. doi: 10.
                 case-carburized gears with an improved surface finish[J]. Journal of  1016/S0301-679X(03)00047-1.
                 Tribology, 2001, 123(4): 709–716. doi: 10.1115/1.1387036.  [16]  Shaw B, Zhang J S. Gear failure investigation methods[R]. Report of
                                                                      th
            [  6  ]  Xiong  Yongqiang,  Sun  Yizhong,  Zhang  Hechao.  Calculation  of  the 4  CGMA Gear Testing and Inspection Seminar and Training.
                 micro-pitting  load  capacity  of  gears  for  wind  power  based  on  Beijing, 2018.
                 elastohydrodynamic  lubrication  contact  theory[J].  Journal  of  [17]  Alanou  M  P,  Evans  H  P,  Snidle  R  W.  Effect  of  different  surface
                 Chongqing University, 2015, 38(1): 126–132 (in Chinese) [熊永强,  treatments  and  coatings  on  the  scuffing  performance  of  hardened
                 孙义忠, 张合超. 采用热弹流润滑理论数值计算的风电齿轮微点                    steel  discs  at  very  high  sliding  speeds[J].  Tribology  International,
                 蚀承载能力分析[J]. 重庆大学学报, 2015, 38(1): 126–132]. doi: 10.  2004, 37(2): 93–102. doi: 10.1016/S0301-679X(03)00039-2.
                 11835/j.issn.1000-582X.2015.01.017.           [18]  Wang  Songnian,  Su  Yifu,  Li  Manlin,  et  al.  The  relative  test  and
            [  7  ]  Xue  Jianhua,  Li  Wei.  Research  on  gear  system  scuffing  load  investigation in scoring load capacity of gears[J]. Journal of Dalian
                 capacity  and  its  numerical  calculation  methods[J].  Transactions  of  Railway Institute, 1986, 3: 89–101 (in Chinese) [王松年, 苏诒福, 李
                 Beijing Institute of Technology, 2014, 34(9): 901–906 (in Chinese)  曼林, 等. 齿轮胶合承载能力的对比试验研究[J]. 大连铁道学院学
                 [薛建华, 李威. 齿轮热胶合承载能力数值计算方法研究[J]. 北京                报, 1986, 3: 89–101].
                 理工大学学报, 2014, 34(9): 901–906]. doi: 10.15918/j.tbit1001-0645.  [19]  Jian  Guangxiao,  Wang  Youqiang,  Luo  Heng,  et  al.  Thermal
                 2014.09.026.                                      elastohydrodynamic  lubrication  of  X-gears  system  based  on  time-
            [  8  ]  Yao  Yuanpeng,  Li  Xiaogang,  Zhou  Kang,  et  al.  Influence  of  S-P  varying  meshing  stiffness[J].  Tribology,  2020,  40(1):  21–29
                 type anti-wear agents on anti-micropitting[J]. Petroleum Processing  (in Chinese) [菅光霄, 王优强, 罗恒, 等. 基于时变啮合刚度的变位
                 And Petrochemicals, 2018, 49(1): 70–74 (in Chinese) [姚元鹏, 李小  齿轮系统热弹流润滑研究[J]. 摩擦学学报, 2020, 40(1): 21–29].
                 刚, 周康, 等. 硫-磷型抗磨剂对齿轮油抗微点蚀性能的影响[J]. 石              doi: 10.16078/j.tribology.2019097.
   51   52   53   54   55   56   57   58   59   60   61