Page 59 - 《摩擦学学报》2021年第5期
P. 59
648 摩 擦 学 学 报 第 41 卷
important influence on the mechanical properties of nano indentation. Therefore, in this paper, the significant difference
of mechanical properties between Cu based Ni film and Ni based Cu film semi-coherent interface structure was
analyzed, and the interaction law of interface structure and dislocation induced by indentation was revealed. It was found
that the different interface structures in the Cu/Ni bilayer film significantly affected the mechanical properties of the
material. Among them, the existence of the semi-coherent interface of the Cu/Ni bilayer film can repel the movable
dislocations produced in the indentation by the mismatched dislocation network on the semi-coherent interface of the Cu
based Ni film, and so it was advantageous for the dislocation to penetrate the semi-coherent region into the copper film,
which can be turned into strengthening effect externally.The mismatch dislocation network on the semi-coherent
interface of Ni based Cu film had an attractive effect on the movable dislocations produced in the indentation, so that the
dislocation was prevented from penetrating the semi-coherent region into the nickel film, which was shown as softening
effect externally and can enhance the toughness of the material. In addition, the theoretical formula of mirror force
between different moduli proposed by Koehler can be used to describe the significant difference. The research results
will play a very practical guiding significance and theoretical reference value for the application of nano multilayers as
coatings in MEMS, surface protection and wear resistance of marine equipment, aerospace and other fields.
Key words: Cu/Ni multilayers; semi-interface; nano-indentation; molecular dynamics; dislocation loop
纳米金属多层膜是两种及以上元素组成的多层 铜镍多层膜的不同界面结构所表现的力学性质差异
状超薄膜,通过交替沉积而成,凭借其优异韧性、超高 做了分析与讨论,并取得一定进展,但对半共格界面
强度和耐辐照等力学性能被广泛应用于集成电路、海 CuNi多层膜力学特性差异的机制,有待进一步深入研
洋装备、微纳机电系统和空天防辐射装备领域 [1-2] . 然 究. 受纳米时空尺度限制,用精密仪器法研究纳米多
而,沉积法制备的金属多层膜会在两单层膜间形成不 层膜力学性质差异机制所耗人物财的代价十分高昂,
[3]
同界面结构,导致金属多层膜有着迥然不同的性质 , 而MD法可克服传统研究法的不足,在动态演绎纳米
比如材料软硬性、耐磨性、防腐性和摩擦性能等不同. 金属多层膜的原子轨迹迁移中独具特色.
根据金属多层膜的界面晶格失配度,可分为共格界 因此,本文作者根据试验沉积法制备的铜镍双层
面、半共格界面和非共格界面三种类型. 由于铜与镍 金属膜中,常出现Cu基Ni膜和Ni基Cu膜两种界面结
晶格失配度小,铜镍多层膜在沉积中易形成半共格界 构. 基于分子动力学法,建立铜镍双层膜半共格界面
面,在界面中有失配位错网状特征产生. 物理模型,研究两种半共格界面结构的力学特性差异
近来,通过试验与理论计算结合,国内外学者聚 机制. 在此研究中将为半共格界面铜镍多层膜力学特
焦于金属多层膜的界面结构设计与力学性能提升的 性差异提供机理解释,也对金属多层膜应用于精仪、
[3]
基础科学问题 [3-12] . Zhu等 基于透射电镜和纳米压痕 空天、船舶和生化等领域提供重要的理论参鉴价值.
法,研究了铜/镍多层膜的显微组织、硬度和蠕变行
1 分子动力学计算
为,结果表明:具有良好调制结构的多层膜在低周期
形成相干超晶格,并发现铜镍多层膜在调制周期为 1.1 MD设置
7~17 nm时,其强度随着调制周期下降而增加. 李锐等 依据纳米压痕法可测量样品载荷与压深关系,及
[9]
基于分子动力学法(简称MD)研究不同界面结构(共 硬度力学属性 . 采用MD法建立四种物理模型(见图1),
[13]
格界面、共格孪晶界面、半共格孪晶界面)对Cu/Ni 研究半共格界面结构Cu基Ni膜和Ni基Cu膜的力学差
多层膜力学性质的影响. 结果指出:纳米压痕时,不同 异机制. 试验中发现沿[111]方向的Cu/Ni多层膜生长
界面结构起到的强化或软化作用机理不同. Mckeown 孪晶界面结构的力学性质有明显差异 . 因此,建模
[5]
[10]
等 用原子力显微镜对铜银和铜镍多层膜的硬度进 时,半共格界面铜镍多层膜物理模型X、Y、Z轴晶向选
行测试,发现调制周期大于10 nm时,两种多层膜都满 取分别为[ 112 110]、[ 111
¯
¯ ¯ ¯]. 采用半球形金刚石压头
¯ ¯ ]、[
足Hall-Petch准则. Fu等 [11-12] 采用MD法研究了共格孪 作为纳米压痕的施加载荷对象,并刚性化处理. 根据
晶界面和厚度对CuNi多层膜的力学性能影响,指出孪 沉积法制备金属多层膜的排列顺序不同,建立了Cu基
晶界与压痕产生的部分位错间发生耦合反应,形成了 Ni膜和Ni基Cu膜两种界面结构,上层膜厚度为10 a,
以软化为主的孪晶界,该孪晶部分滑移以及孪晶界平 基体厚度为30 a,其中a表示对应基体晶格常数. 铜镍
行的部分滑移均能有效降低材料硬度. 上述研究虽对 双层膜的Cu晶格常数为0.361 5 nm,Ni晶格常数为