Page 28 - 《摩擦学学报》2021年第5期
P. 28

第 5 期               柏伟, 等: (CuMnNi) 100-x Al x 高熵铜合金的显微组织、力学与摩擦学性能研究                         617

                 Technology, 2010, 39(7): 41–44 (in Chinese) [周志明, 谷成渝, 牟  10.1007/s11837-013-0776-z.
                 飞, 等. 高强度铝青铜合金的研究进展[J]. 热加工工艺, 2010,          [14]  Li Zezhou, Zhao Shiteng, Ritchie R O, et al. Mechanical properties
                 39(7): 41–44]. doi: 10.14158/j.cnki.1001-3814.2010.07.042.  of  high-entropy  alloys  with  emphasis  on  face-centered  cubic
            [  3  ]  Equey S, Houriet A, Mischler S. Wear and frictional mechanisms of  alloys[J].  Progress  in  Materials  Science,  2019,  102:  296–345.  doi:
                 copper-based  bearing  alloys[J].  Wear,  2011,  273(1):  9–16.  doi:  10.1016/j.pmatsci.2018.12.003.
                 10.1016/j.wear.2011.03.030.                   [15]  Takeuchi  A,  Inoue  A.  Classification  of  bulk  metallic  glasses  by
            [  4  ]  Hashemi  M.  Microstructure  and  wear  behavior  of  a  manganese  atomic  size  difference,  heat  of  mixing  and  period  of  constituent
                 bronze bearing material under unlubricated conditions[J]. Tribology  elements and its application to characterization of the main alloying
                 Transactions,  2015,  58(4):  750–757.  doi:  10.1080/10402004.2015.  element[J].  Materials  Transactions,  2005,  46(12):  2817–2829.  doi:
                 1015756.                                          10.2320/matertrans.46.2817.
            [  5  ]  Cong Hongmei, Zou Zhongqin. Study on the effect of Al, Ti content  [16]  Couzinié  J  P,  Dirras  G.  Body-centered  cubic  high-entropy  alloys:
                 on  microstructure  and  hardness  of  high  manganic  aluminum  From  processing  to  underlying  deformation  mechanisms[J].
                 bronze[J]. Shandong Metallurgy, 2004, 26(2): 57–58,61 (in Chinese)  Materials  Characterization,  2019,  147:  533–544.  doi:  10.1016/
                 [丛红梅, 邹仲芹. Al、Ti元素对高锰铝青铜组织和性能的影响[J].              j.matchar.2018.07.015.
                 山东冶金, 2004, 26(2): 57–58,61]. doi: 10.16727/j.cnki.issn1004-  [17]  Toulfatzis A I, Pantazopoulos G A, Paipetis A S. Fracture mechanics
                 4620.2004.02.023.                                 properties  and  failure  mechanisms  of  environmental-friendly  brass
            [  6  ]  Lu  Yang,  Jin  Woxin,  Li  Wensheng,  et  al.  Effect  of  Fe  on  wear-  alloys  under  impact,  cyclic  and  monotonic  loading  conditions[J].
                 friction  properties  of  high  aluminum  bronze[J].  Materials  Review,  Engineering  Failure  Analysis,  2018,  90:  497–517.  doi:  10.1016/
                 2008, 22(2): 135–137 (in Chinese) [路阳, 金硪馨, 李文生, 等. Fe对  j.engfailanal.2018.04.001.
                 高 铝 青 铜 摩 擦 磨 损 性 能 的 影 响 [J].  材 料 导 报 ,  2008,  22(2):  [18]  Qin E W, Lu L, Tao N R, et al. Enhanced fracture toughness and
                 135–137]. doi: 10.3321/j.issn:1005-023X.2008.02.038.  strength in bulk nanocrystalline Cu with nanoscale twin bundles[J].
            [  7  ]  Zhao  Xiaobo,  Zhang  Jun,  Han  Bingqi,  et  al.  Studying  on  Acta  Materialia,  2009,  57(20):  6215–6225.  doi:  10.1016/j.actamat.
                 performance  of  Aluminum  bronze  QAl9-4[J].  Science  &  2009.08.048.
                 Technology Information, 2013(23): 70–71 (in Chinese) [赵晓波, 张  [19]  Li  Pengde,  Wu  Youzhi,  Zhang  Aijun,  et  al.  Microstructure,
                 军, 韩兵奇, 等. 铝青铜QAl9-4的性能分析[J]. 科技资讯, 2013(23):     mechanical  and  tribological  properties  of  Al 0.2 Co 1.5 CrFe 1.2 Ni 1.5
                 70–71]. doi: 10.16661/j.cnki.1672-3791.2013.23.013.  TiC 0.4   high  entropy  alloy[J].  Tribology,  2017,  37(4):  457–464
            [  8  ]  Laws  K  J,  Crosby  C,  Sridhar  A,  et  al.  High  entropy  brasses  and  (in Chinese) [李鹏德, 吴有智, 张爱军, 等. Al 0.2 Co 1.5 CrFe 1.2 Ni 1.5
                 bronzes-Microstructure,  phase  evolution  and  properties[J].  Journal  TiC 0.4 高熵合金的微观组织、力学与高温摩擦学性能[J]. 摩擦学学
                 of  Alloys  and  Compounds,  2015,  650:  949–961.  doi:  报, 2017, 37(4): 457–464]. doi: 10.16078/j.tribology.2017.04.006.
                 10.1016/j.jallcom.2015.07.285.                [20]  Zhang Naijun, Sun Jifeng, Ding Chen. Effect of microstructure and
            [  9  ]  Nagase  T,  Shibata  A,  Matsumuro  M,  et  al.  Alloy  design  and  morphology  on  fracture  toughness  of  TC18  titanium  alloy
                 fabrication of ingots in Cu-Zn-Mn-Ni-Sn high-entropy and Cu-Zn-  forgings[J]. Baosteel Technology, 2017(6): 20–25 (in Chinese) [章
                 Mn-Ni medium-entropy brasses[J]. Materials & Design, 2019, 181:  乃俊, 孙继锋, 丁晨. TC18钛合金组织形貌对断裂韧性的影响[J].
                 107900. doi: 10.1016/j.matdes.2019.107900.        宝 钢 技 术 ,  2017(6):  20–25].  doi:  10.3969/j.issn.1008-0716.2017.
            [10]  LaRosa C R, Shih M, Varvenne C, et al. Solid solution strengthening  06.004.
                 theories of high-entropy alloys[J]. Materials Characterization, 2019,  [21]  Zaddach A J, Scattergood R O, Koch C C. Tensile properties of low-
                 151: 310–317. doi: 10.1016/j.matchar.2019.02.034.  stacking fault energy high-entropy alloys[J]. Materials Science and
            [11]  Tsai  M  H,  Yeh  J  W.  High-entropy  alloys:  a  critical  review[J].  Engineering:A,  2015,  636:  373–378.  doi:  10.1016/j.msea.2015.
                 Materials  Research  Letters,  2014,  2(3):  107–123.  doi:  10.1080/  03.109.
                 21663831.2014.912690.                         [22]  Li Hai, Sun Wangjie, Wang Zhixiu, et al. Friction and wear behavior
            [12]  Bao Yayun, Ji Xiulin, Gu Peng, et al. Effect of aluminum content on  of Cu-Al-Fe-Ni-Pb aluminum bronze[J]. Hot Working Technology,
                 the microstructure and erosion wear resistance of FeCrNiCoCu high-  2015, 44(16): 100–103 (in Chinese) [李海, 孙王杰, 王芝秀, 等. Cu-
                 entropy  alloy  coatings[J].  Tribology,  2017,  37(4):  421–428  Al-Fe-Ni-Pb铝青铜摩擦磨损行为的研究[J]. 热加工工艺, 2015,
                 (in Chinese) [鲍亚运, 纪秀林, 顾鹏, 等. Al含量对FeCrNiCoCu高   44(16): 100–103]. doi: 10.14158/j.cnki.1001-3814.2015.16.028.
                 熵合金涂层组织结构及冲蚀性能的影响[J]. 摩擦学学报, 2017,            [23]  Zhang Aijun, Han Jiesheng, Su Bo, et al. Tribological properties of
                 37(4): 421–428]. doi: 10.16078/j.tribology.2017.04.001.  AlCoCrFeNi  high  entropy  alloy  at  elevated  temperature[J].
            [13]  Tang Z, Gao M C, Diao H Y, et al. Aluminum alloying effects on  Tribology, 2017, 37(6): 776–783 (in Chinese) [张爱军, 韩杰胜, 苏
                 lattice  types,  microstructures,  and  mechanical  behavior  of  high-  博, 等. AlCoCrFeNi高熵合金的高温摩擦磨损性能[J]. 摩擦学学
                 entropy  alloys  systems[J].  JOM,  2013,  65(12):  1848–1858.  doi:  报, 2017, 37(6): 776–783]. doi: 10.16078/j.tribology.2017.06.008.
   23   24   25   26   27   28   29   30   31   32   33