Page 28 - 《摩擦学学报》2021年第5期
P. 28
第 5 期 柏伟, 等: (CuMnNi) 100-x Al x 高熵铜合金的显微组织、力学与摩擦学性能研究 617
Technology, 2010, 39(7): 41–44 (in Chinese) [周志明, 谷成渝, 牟 10.1007/s11837-013-0776-z.
飞, 等. 高强度铝青铜合金的研究进展[J]. 热加工工艺, 2010, [14] Li Zezhou, Zhao Shiteng, Ritchie R O, et al. Mechanical properties
39(7): 41–44]. doi: 10.14158/j.cnki.1001-3814.2010.07.042. of high-entropy alloys with emphasis on face-centered cubic
[ 3 ] Equey S, Houriet A, Mischler S. Wear and frictional mechanisms of alloys[J]. Progress in Materials Science, 2019, 102: 296–345. doi:
copper-based bearing alloys[J]. Wear, 2011, 273(1): 9–16. doi: 10.1016/j.pmatsci.2018.12.003.
10.1016/j.wear.2011.03.030. [15] Takeuchi A, Inoue A. Classification of bulk metallic glasses by
[ 4 ] Hashemi M. Microstructure and wear behavior of a manganese atomic size difference, heat of mixing and period of constituent
bronze bearing material under unlubricated conditions[J]. Tribology elements and its application to characterization of the main alloying
Transactions, 2015, 58(4): 750–757. doi: 10.1080/10402004.2015. element[J]. Materials Transactions, 2005, 46(12): 2817–2829. doi:
1015756. 10.2320/matertrans.46.2817.
[ 5 ] Cong Hongmei, Zou Zhongqin. Study on the effect of Al, Ti content [16] Couzinié J P, Dirras G. Body-centered cubic high-entropy alloys:
on microstructure and hardness of high manganic aluminum From processing to underlying deformation mechanisms[J].
bronze[J]. Shandong Metallurgy, 2004, 26(2): 57–58,61 (in Chinese) Materials Characterization, 2019, 147: 533–544. doi: 10.1016/
[丛红梅, 邹仲芹. Al、Ti元素对高锰铝青铜组织和性能的影响[J]. j.matchar.2018.07.015.
山东冶金, 2004, 26(2): 57–58,61]. doi: 10.16727/j.cnki.issn1004- [17] Toulfatzis A I, Pantazopoulos G A, Paipetis A S. Fracture mechanics
4620.2004.02.023. properties and failure mechanisms of environmental-friendly brass
[ 6 ] Lu Yang, Jin Woxin, Li Wensheng, et al. Effect of Fe on wear- alloys under impact, cyclic and monotonic loading conditions[J].
friction properties of high aluminum bronze[J]. Materials Review, Engineering Failure Analysis, 2018, 90: 497–517. doi: 10.1016/
2008, 22(2): 135–137 (in Chinese) [路阳, 金硪馨, 李文生, 等. Fe对 j.engfailanal.2018.04.001.
高 铝 青 铜 摩 擦 磨 损 性 能 的 影 响 [J]. 材 料 导 报 , 2008, 22(2): [18] Qin E W, Lu L, Tao N R, et al. Enhanced fracture toughness and
135–137]. doi: 10.3321/j.issn:1005-023X.2008.02.038. strength in bulk nanocrystalline Cu with nanoscale twin bundles[J].
[ 7 ] Zhao Xiaobo, Zhang Jun, Han Bingqi, et al. Studying on Acta Materialia, 2009, 57(20): 6215–6225. doi: 10.1016/j.actamat.
performance of Aluminum bronze QAl9-4[J]. Science & 2009.08.048.
Technology Information, 2013(23): 70–71 (in Chinese) [赵晓波, 张 [19] Li Pengde, Wu Youzhi, Zhang Aijun, et al. Microstructure,
军, 韩兵奇, 等. 铝青铜QAl9-4的性能分析[J]. 科技资讯, 2013(23): mechanical and tribological properties of Al 0.2 Co 1.5 CrFe 1.2 Ni 1.5
70–71]. doi: 10.16661/j.cnki.1672-3791.2013.23.013. TiC 0.4 high entropy alloy[J]. Tribology, 2017, 37(4): 457–464
[ 8 ] Laws K J, Crosby C, Sridhar A, et al. High entropy brasses and (in Chinese) [李鹏德, 吴有智, 张爱军, 等. Al 0.2 Co 1.5 CrFe 1.2 Ni 1.5
bronzes-Microstructure, phase evolution and properties[J]. Journal TiC 0.4 高熵合金的微观组织、力学与高温摩擦学性能[J]. 摩擦学学
of Alloys and Compounds, 2015, 650: 949–961. doi: 报, 2017, 37(4): 457–464]. doi: 10.16078/j.tribology.2017.04.006.
10.1016/j.jallcom.2015.07.285. [20] Zhang Naijun, Sun Jifeng, Ding Chen. Effect of microstructure and
[ 9 ] Nagase T, Shibata A, Matsumuro M, et al. Alloy design and morphology on fracture toughness of TC18 titanium alloy
fabrication of ingots in Cu-Zn-Mn-Ni-Sn high-entropy and Cu-Zn- forgings[J]. Baosteel Technology, 2017(6): 20–25 (in Chinese) [章
Mn-Ni medium-entropy brasses[J]. Materials & Design, 2019, 181: 乃俊, 孙继锋, 丁晨. TC18钛合金组织形貌对断裂韧性的影响[J].
107900. doi: 10.1016/j.matdes.2019.107900. 宝 钢 技 术 , 2017(6): 20–25]. doi: 10.3969/j.issn.1008-0716.2017.
[10] LaRosa C R, Shih M, Varvenne C, et al. Solid solution strengthening 06.004.
theories of high-entropy alloys[J]. Materials Characterization, 2019, [21] Zaddach A J, Scattergood R O, Koch C C. Tensile properties of low-
151: 310–317. doi: 10.1016/j.matchar.2019.02.034. stacking fault energy high-entropy alloys[J]. Materials Science and
[11] Tsai M H, Yeh J W. High-entropy alloys: a critical review[J]. Engineering:A, 2015, 636: 373–378. doi: 10.1016/j.msea.2015.
Materials Research Letters, 2014, 2(3): 107–123. doi: 10.1080/ 03.109.
21663831.2014.912690. [22] Li Hai, Sun Wangjie, Wang Zhixiu, et al. Friction and wear behavior
[12] Bao Yayun, Ji Xiulin, Gu Peng, et al. Effect of aluminum content on of Cu-Al-Fe-Ni-Pb aluminum bronze[J]. Hot Working Technology,
the microstructure and erosion wear resistance of FeCrNiCoCu high- 2015, 44(16): 100–103 (in Chinese) [李海, 孙王杰, 王芝秀, 等. Cu-
entropy alloy coatings[J]. Tribology, 2017, 37(4): 421–428 Al-Fe-Ni-Pb铝青铜摩擦磨损行为的研究[J]. 热加工工艺, 2015,
(in Chinese) [鲍亚运, 纪秀林, 顾鹏, 等. Al含量对FeCrNiCoCu高 44(16): 100–103]. doi: 10.14158/j.cnki.1001-3814.2015.16.028.
熵合金涂层组织结构及冲蚀性能的影响[J]. 摩擦学学报, 2017, [23] Zhang Aijun, Han Jiesheng, Su Bo, et al. Tribological properties of
37(4): 421–428]. doi: 10.16078/j.tribology.2017.04.001. AlCoCrFeNi high entropy alloy at elevated temperature[J].
[13] Tang Z, Gao M C, Diao H Y, et al. Aluminum alloying effects on Tribology, 2017, 37(6): 776–783 (in Chinese) [张爱军, 韩杰胜, 苏
lattice types, microstructures, and mechanical behavior of high- 博, 等. AlCoCrFeNi高熵合金的高温摩擦磨损性能[J]. 摩擦学学
entropy alloys systems[J]. JOM, 2013, 65(12): 1848–1858. doi: 报, 2017, 37(6): 776–783]. doi: 10.16078/j.tribology.2017.06.008.