Page 149 - 《摩擦学学报》2021年第4期
P. 149
592 摩 擦 学 学 报 第 41 卷
induced by multiple transferred graphene nanoflakes[J]. Advanced [49] Matsumoto N, Mistry K K, Kim J H, et al. Friction reducing
Science, 2018, 5(3): 1700616. doi: 10.1002/advs.201700616. properties of onion-like carbon based lubricant under high contact
[37] Itamura N, Miura K, Sasaki N. Simulation of scan-directional pressure[J]. Tribology - Materials, Surfaces & Interfaces, 2012, 6(3):
dependence of superlubricity of C60 Molecular bearings and 116–120. doi: 10.1179/1751584X12Y.0000000014.
graphite[J]. Japanese Journal of Applied Physics, 2009, 48(6): [50] Bejagam K K, Singh S, Deshmukh S A. Nanoparticle activated and
060207. doi: 10.1143/jjap.48.060207. directed assembly of graphene into a nanoscroll[J]. Carbon, 2018,
[38] Ma Tianbao, Hu Yuanzhong, Wang Hui. Molecular dynamics 134: 43–52. doi: 10.1016/j.carbon.2018.03.077.
simulation of shear-induced graphitization of amorphous carbon [51] Neyts E, Bogaerts A, van de Sanden M C M. Effect of hydrogen on
films[J]. Carbon, 2009, 47(8): 1953–1957. doi: 10.1016/j.carbon. the growth of thin hydrogenated amorphous carbon films from
2009.03.040. thermal energy radicals[J]. Applied Physics Letters, 2006, 88(14):
[39] Ma Tianbao, Hu Yuanzhong, Xu Liang, et al. Shear-induced 141922. doi: 10.1063/1.2193803.
lamellar ordering and interfacial sliding in amorphous carbon films: [52] Gong Zhenbin, Bai Changning, Qiang Li, et al. Onion-like carbon
a superlow friction regime[J]. Chemical Physics Letters, 2011, films endow macro-scale superlubricity[J]. Diamond and Related
514(4-6): 325–329. doi: 10.1016/j.cplett.2011.08.079. Materials, 2018, 87: 172–176. doi: 10.1016/j.diamond.2018.06.004.
[40] Li Xiaowei, Wang Aiying, Lee K R. Insights on low-friction [53] Li Ruiyun, Yang Xing, Hou Deliang, et al. Superlubricity of carbon
mechanism of amorphous carbon films from reactive molecular nanostructural films enhanced by graphene nanoscrolls[J]. Materials
dynamics study[J]. Tribology International, 2019, 131: 567–578. Letters, 2020, 271: 127748. doi: 10.1016/j.matlet.2020.127748.
doi: 10.1016/j.triboint.2018.11.021. [54] Berman D, Mutyala K C, Srinivasan S, et al. Iron-nanoparticle
[41] Li Xiaowei, Wang Aiying, Lee K R. Atomistic understanding on driven tribochemistry leading to superlubric sliding interfaces[J].
friction behavior of amorphous carbon films induced by surface Advanced Materials Interfaces, 2019, 6(23): 1901416. doi: 10.1002/
hydrogenated modification[J]. Tribology International, 2019, 136: admi.201901416.
446–454. doi: 10.1016/j.triboint.2019.04.019. [55] Song Hui, Ji Li, Li Hongxuan, et al. Perspectives of friction
[42] Wang Yongfu, Gao Kaixiong, Zhang Bin, et al. Structure effects of mechanism of a-C: H film in vacuum concerning the onion-like
sp2-rich carbon films under super-low friction contact[J]. Carbon, carbon transformation at the sliding interface[J]. RSC Advances,
2018, 137: 49–56. doi: 10.1016/j.carbon.2018.05.016. 2015, 5(12): 8904–8911. doi: 10.1039/c4ra16348f.
[43] Song Hui, Ji Li, Li Hongxuan, et al. External-field-induced growth [56] Wei Jing, Li Hanchao, Liu Linlin, et al. Enhanced tribological and
effect of an a-C: H film for manipulating its medium-range nano- corrosion properties of multilayer ta-C films via alternating sp3
structures and properties[J]. ACS Applied Materials & Interfaces, content[J]. Surface and Coatings Technology, 2019, 374: 317–326.
2016, 8(10): 6639–6645. doi: 10.1021/acsami.5b11970. doi: 10.1016/j.surfcoat.2019.05.087.
[44] Wang Yongfu, Gao Kaixiong, Zhang Junyan. Observation of [57] Xu Xiaowei, Guo Peng, Tiong L C O, et al. Role of dimple textured
structure transition as a function of temperature in depositing surface on tribological properties of Ti/Al-codoped diamond-like
2
hydrogenated sp -rich carbon films[J]. Applied Surface Science, carbon films[J]. Thin Solid Films, 2020, 708: 138136. doi: 10.1016/
2018, 439: 1152–1157. doi: 10.1016/j.apsusc.2018.01.250. j.tsf.2020.138136.
[45] Li Ruiyun, Wang Yongfu, Zhang Junyan, et al. Origin of higher [58] Zhou Yong, Guo Peng, Sun Lili, et al. Microstructure and property
graphitization under higher humidity on the frictional surface of self- evolution of diamond-like carbon films co-doped by Al and Ti with
mated hydrogenated carbon films[J]. Applied Surface Science, 2019, different ratios[J]. Surface and Coatings Technology, 2019, 361:
494: 452–457. doi: 10.1016/j.apsusc.2019.07.078. 83–90. doi: 10.1016/j.surfcoat.2019.01.049.
[46] Qiao Zhijun, Li Jiajun, Zhao Naiqin, et al. Graphitization and [59] Moolsradoo N, Watanabe S. Modification of tribological
microstructure transformation of nanodiamond to onion-like performance of DLC films by means of some elements addition[J].
carbon[J]. Scripta Materialia, 2006, 54(2): 225–229. doi: 10.1016/ Diamond and Related Materials, 2010, 19(5-6): 525–529. doi:
j.scriptamat.2005.09.037. 10.1016/j.diamond.2010.01.010.
[47] Weingarth D, Zeiger M, Jäckel N, et al. Graphitization as a universal [60] Matta C, Joly-Pottuz L, De Barros Bouchet M I, et al. Superlubricity
tool to tailor the potential-dependent capacitance of carbon super- and tribochemistry of polyhydric alcohols[J]. Physical Review B,
capacitors[J]. Advanced Energy Materials, 2014, 4(13): 1400316. 2008, 78(8): 085436. doi: 10.1103/physrevb.78.085436.
doi: 10.1002/aenm.201400316. [61] Kuwahara T, Romero P A, Makowski S, et al. Mechano-chemical
[48] Yao Yanli, Wang Xiaomin, Guo Junjie, et al. Tribological property decomposition of organic friction modifiers with multiple reactive
of onion-like fullerenes as lubricant additive[J]. Materials Letters, centres induces superlubricity of ta-C[J]. Nature Communications,
2008, 62(16): 2524–2527. doi: 10.1016/j.matlet.2007.12.056. 2019, 10: 151. doi: 10.1038/s41467-018-08042-8.