Page 149 - 《摩擦学学报》2021年第4期
P. 149

592                                     摩   擦   学   学   报                                 第 41 卷

                 induced  by  multiple  transferred  graphene  nanoflakes[J].  Advanced  [49]  Matsumoto  N,  Mistry  K  K,  Kim  J  H,  et  al.  Friction  reducing
                 Science, 2018, 5(3): 1700616. doi: 10.1002/advs.201700616.  properties  of  onion-like  carbon  based  lubricant  under  high  contact
            [37]  Itamura  N,  Miura  K,  Sasaki  N.  Simulation  of  scan-directional  pressure[J]. Tribology - Materials, Surfaces & Interfaces, 2012, 6(3):
                 dependence  of  superlubricity  of  C60  Molecular  bearings  and  116–120. doi: 10.1179/1751584X12Y.0000000014.
                 graphite[J].  Japanese  Journal  of  Applied  Physics,  2009,  48(6):  [50]  Bejagam K K, Singh S, Deshmukh S A. Nanoparticle activated and
                 060207. doi: 10.1143/jjap.48.060207.              directed  assembly  of  graphene  into  a  nanoscroll[J].  Carbon,  2018,
            [38]  Ma  Tianbao,  Hu  Yuanzhong,  Wang  Hui.  Molecular  dynamics  134: 43–52. doi: 10.1016/j.carbon.2018.03.077.
                 simulation  of  shear-induced  graphitization  of  amorphous  carbon  [51]  Neyts E, Bogaerts A, van de Sanden M C M. Effect of hydrogen on
                 films[J].  Carbon,  2009,  47(8):  1953–1957.  doi:  10.1016/j.carbon.  the  growth  of  thin  hydrogenated  amorphous  carbon  films  from
                 2009.03.040.                                      thermal  energy  radicals[J].  Applied  Physics  Letters,  2006,  88(14):
            [39]  Ma  Tianbao,  Hu  Yuanzhong,  Xu  Liang,  et  al.  Shear-induced  141922. doi: 10.1063/1.2193803.
                 lamellar ordering and interfacial sliding in amorphous carbon films:  [52]  Gong Zhenbin, Bai Changning, Qiang Li, et al. Onion-like carbon
                 a  superlow  friction  regime[J].  Chemical  Physics  Letters,  2011,  films  endow  macro-scale  superlubricity[J].  Diamond  and  Related
                 514(4-6): 325–329. doi: 10.1016/j.cplett.2011.08.079.  Materials, 2018, 87: 172–176. doi: 10.1016/j.diamond.2018.06.004.
            [40]  Li  Xiaowei,  Wang  Aiying,  Lee  K  R.  Insights  on  low-friction  [53]  Li Ruiyun, Yang Xing, Hou Deliang, et al. Superlubricity of carbon
                 mechanism  of  amorphous  carbon  films  from  reactive  molecular  nanostructural films enhanced by graphene nanoscrolls[J]. Materials
                 dynamics  study[J].  Tribology  International,  2019,  131:  567–578.  Letters, 2020, 271: 127748. doi: 10.1016/j.matlet.2020.127748.
                 doi: 10.1016/j.triboint.2018.11.021.          [54]  Berman  D,  Mutyala  K  C,  Srinivasan  S,  et  al.  Iron-nanoparticle
            [41]  Li  Xiaowei,  Wang  Aiying,  Lee  K  R.  Atomistic  understanding  on  driven  tribochemistry  leading  to  superlubric  sliding  interfaces[J].
                 friction  behavior  of  amorphous  carbon  films  induced  by  surface  Advanced Materials Interfaces, 2019, 6(23): 1901416. doi: 10.1002/
                 hydrogenated  modification[J].  Tribology  International,  2019,  136:  admi.201901416.
                 446–454. doi: 10.1016/j.triboint.2019.04.019.  [55]  Song  Hui,  Ji  Li,  Li  Hongxuan,  et  al.  Perspectives  of  friction
            [42]  Wang Yongfu, Gao Kaixiong, Zhang Bin, et al. Structure effects of  mechanism  of  a-C:  H  film  in  vacuum  concerning  the  onion-like
                 sp2-rich  carbon  films  under  super-low  friction  contact[J].  Carbon,  carbon  transformation  at  the  sliding  interface[J].  RSC  Advances,
                 2018, 137: 49–56. doi: 10.1016/j.carbon.2018.05.016.  2015, 5(12): 8904–8911. doi: 10.1039/c4ra16348f.
            [43]  Song Hui, Ji Li, Li Hongxuan, et al. External-field-induced growth  [56]  Wei Jing, Li Hanchao, Liu Linlin, et al. Enhanced tribological and
                 effect  of  an  a-C:  H  film  for  manipulating  its  medium-range  nano-  corrosion  properties  of  multilayer  ta-C  films  via  alternating  sp3
                 structures  and  properties[J].  ACS  Applied  Materials  &  Interfaces,  content[J]. Surface and Coatings Technology, 2019, 374: 317–326.
                 2016, 8(10): 6639–6645. doi: 10.1021/acsami.5b11970.  doi: 10.1016/j.surfcoat.2019.05.087.
            [44]  Wang  Yongfu,  Gao  Kaixiong,  Zhang  Junyan.  Observation  of  [57]  Xu Xiaowei, Guo Peng, Tiong L C O, et al. Role of dimple textured
                 structure  transition  as  a  function  of  temperature  in  depositing  surface  on  tribological  properties  of  Ti/Al-codoped  diamond-like
                           2
                 hydrogenated  sp -rich  carbon  films[J].  Applied  Surface  Science,  carbon films[J]. Thin Solid Films, 2020, 708: 138136. doi: 10.1016/
                 2018, 439: 1152–1157. doi: 10.1016/j.apsusc.2018.01.250.  j.tsf.2020.138136.
            [45]  Li  Ruiyun,  Wang  Yongfu,  Zhang  Junyan,  et  al.  Origin  of  higher  [58]  Zhou Yong, Guo Peng, Sun Lili, et al. Microstructure and property
                 graphitization under higher humidity on the frictional surface of self-  evolution of diamond-like carbon films co-doped by Al and Ti with
                 mated hydrogenated carbon films[J]. Applied Surface Science, 2019,  different  ratios[J].  Surface  and  Coatings  Technology,  2019,  361:
                 494: 452–457. doi: 10.1016/j.apsusc.2019.07.078.  83–90. doi: 10.1016/j.surfcoat.2019.01.049.
            [46]  Qiao  Zhijun,  Li  Jiajun,  Zhao  Naiqin,  et  al.  Graphitization  and  [59]  Moolsradoo  N,  Watanabe  S.  Modification  of  tribological
                 microstructure  transformation  of  nanodiamond  to  onion-like  performance of DLC films by means of some elements addition[J].
                 carbon[J].  Scripta  Materialia,  2006,  54(2):  225–229.  doi:  10.1016/  Diamond  and  Related  Materials,  2010,  19(5-6):  525–529.  doi:
                 j.scriptamat.2005.09.037.                         10.1016/j.diamond.2010.01.010.
            [47]  Weingarth D, Zeiger M, Jäckel N, et al. Graphitization as a universal  [60]  Matta C, Joly-Pottuz L, De Barros Bouchet M I, et al. Superlubricity
                 tool  to  tailor  the  potential-dependent  capacitance  of  carbon  super-  and  tribochemistry  of  polyhydric  alcohols[J].  Physical  Review  B,
                 capacitors[J].  Advanced  Energy  Materials,  2014,  4(13):  1400316.  2008, 78(8): 085436. doi: 10.1103/physrevb.78.085436.
                 doi: 10.1002/aenm.201400316.                  [61]  Kuwahara T, Romero P A, Makowski S, et al. Mechano-chemical
            [48]  Yao Yanli, Wang Xiaomin, Guo Junjie, et al. Tribological property  decomposition  of  organic  friction  modifiers  with  multiple  reactive
                 of  onion-like  fullerenes  as  lubricant  additive[J].  Materials  Letters,  centres  induces  superlubricity  of  ta-C[J].  Nature  Communications,
                 2008, 62(16): 2524–2527. doi: 10.1016/j.matlet.2007.12.056.  2019, 10: 151. doi: 10.1038/s41467-018-08042-8.
   144   145   146   147   148   149   150   151   152   153   154