Page 148 - 《摩擦学学报》2021年第4期
P. 148
第 4 期 李瑞云, 等: 非晶碳薄膜固体超滑设计的滚-滑原则 591
[ 9 ] Hirano M, Shinjo K. Atomistic locking and friction[J]. Physical a unique fullerene-like nanostructure[J]. Nanotechnology, 2008,
Review B, 1990, 41(17): 11837. doi: 10.1103/physrevb.41.11837. 19(22): 225709. doi: 10.1088/0957-4484/19/22/225709.
[10] Shinjo K, Hirano M. Dynamics of friction: superlubric state[J]. [24] Ji Li, Li Hongxuan, Zhao Fei, et al. Fullerene-like hydrogenated
Surface Science, 1993, 283(1-3): 473–478. doi: 10.1016/0039- carbon films with super-low friction and wear, and low sensitivity to
6028(93)91022-H. environment[J]. Journal of Physics D: Applied Physics, 2010, 43(1):
[11] Sokoloff J B. Theory of energy dissipation in sliding crystal 015404. doi: 10.1088/0022-3727/43/1/015404.
surfaces[J]. Physical Review B, 1990, 42(1): 760–765. doi: [25] Wang Yongfu, Bai Yongqing, Gao Kaixiong, et al. New
10.1103/physrevb.42.760. achievements in solid superlubricity of engineering oriented carbon
[12] Ouyang Wengen. New reduced models for structural superlubricity films[J]. Scientia Sinica Chimica, 2018, 48(12): 1466–1477
[D]. Beijing: Tsinghua University, 2016 (in Chinese) [欧阳稳根. 结 (in Chinese) [王永富, 白永庆, 高凯雄, 等. 工程导向碳薄膜宏观超
构超润滑新约化模型[D]. 北京: 清华大学, 2016]. 滑研究进展[J]. 中国科学: 化学, 2018, 48(12): 1466–1477]. doi:
[13] Dienwiebel M, Verhoeven G S, Pradeep N, et al. Superlubricity of 10.1360/N032018-00185.
graphite[J]. Physical Review Letters, 2004, 92(12): 126101. doi: [26] Erdemir A. The role of hydrogen in tribological properties of
10.1103/PhysRevLett.92.126101. diamond-like carbon films[J]. Surface and Coatings Technology,
[14] Erdemir A, Donnet C. Tribology of diamond-like carbon films: 2001, 146-147: 292–297. doi: 10.1016/S0257-8972(01)01417-7.
recent progress and future prospects[J]. Journal of Physics D: [27] Erdemir A, Eryilmaz O L, Nilufer I B, et al. Synthesis of superlow-
Applied Physics, 2006, 39(18): R311–R327. doi: 10.1088/0022- friction carbon films from highly hydrogenated methane plasmas[J].
3727/39/18/r01. Surface and Coatings Technology, 2000, 133-134: 448–454. doi:
[15] Erdemir A, Eryilmaz O. Achieving superlubricity in DLC films by 10.1016/S0257-8972(00)00968-3.
controlling bulk, surface, and tribochemistry[J]. Friction, 2014, 2(2): [28] Andersson J, Erck R A, Erdemir A. Friction of diamond-like carbon
140–155. doi: 10.1007/s40544-014-0055-1. films in different atmospheres[J]. Wear, 2003, 254(11): 1070–1075.
[16] Bollmann W, Spreadborough J. Action of graphite as a lubricant[J]. doi: 10.1016/S0043-1648(03)00336-3.
Nature, 1960, 186(4718): 29–30. doi: 10.1038/186029a0. [29] Wang Shunhua, Huo Lei, Ju Pengfei, et al. The first-principles
[17] Jacob W, Möller W. On the structure of thin hydrocarbon films[J]. calculations of the interaction of H 2 O and O 2 molecules on the
Applied Physics Letters, 1993, 63(13): 1771–1773. doi: surface of hydrogen-free diamond films[J]. Tribology, 2019, 39(3):
10.1063/1.110683. 350–356 (in Chinese) [王顺花, 霍磊, 鞠鹏飞, 等. 无氢类金刚石薄
[18] Robertson J. Diamond-like amorphous carbon[J]. Materials Science 膜表面H 2 O和O 2 分子共同作用的第一性原理计算[J]. 摩擦学学
and Engineering: R: Reports, 2002, 37(4-6): 129–281. doi: 10.1016/ 报, 2019, 39(3): 350–356]. doi: 10.16078/j.tribology.2018013.
S0927-796X(02)00005-0. [30] Chen Xinchun, Zhang Chenhui, Kato T, et al. Evolution of tribo-
[19] Cai Sheng, Guo Peng, Zuo Xiao, et al. Effect of load on tribological induced interfacial nanostructures governing superlubricity in a-C:H
behavior of MoS 2 /C composite films[J]. Tribology, 2018, 38(1): and a-C:H:Si films[J]. Nature Communications, 2018, 8: 1675. doi:
51–58 (in Chinese) [蔡胜, 郭鹏, 左潇, 等. 载荷对MoS 2 /C复合薄膜 10.1038/s41467-017-01717-8.
摩擦学行为的影响[J]. 摩擦学学报, 2018, 38(1): 51–58]. doi: [31] Dienwiebel M, Pradeep N, Verhoeven G S, et al. Model experiments
10.16078/j.tribology.2018.01.007. of superlubricity of graphite[J]. Surface Science, 2005, 576(1-3):
[20] Chai Liqiang, Ning Kexin, Qiao Li, et al. Influence of gamma 197–211. doi: 10.1016/j.susc.2004.12.011.
irradiation on microstructure, mechanical properties and tribological [32] Verhoeven G S, Dienwiebel M, Frenken J W M. Model calculations
properties of a-C: H films[J]. Tribology, 2021, 41(2): 169–175 of superlubricity of graphite[J]. Physical Review B, 2004, 70(16):
(in Chinese) [柴利强, 宁可心, 乔丽, 等. γ辐照对a-C: H薄膜微观组 165418. doi: 10.1103/physrevb.70.165418.
织力学性能及摩擦学性能的影响[J]. 摩擦学学报, 2021, 41(2): [33] Sharp T A, Pastewka L, Robbins M O. Elasticity limits structural
169–175]. superlubricity in large contacts[J]. Physical Review B, 2016, 93(12):
[21] Wang Chengbing, Yang Shengrong, Wang Qi, et al. Comparative 121402. doi: 10.1103/physrevb.93.121402.
study of hydrogenated diamondlike carbon film and hard hydro- [34] Liu Z, Yang J, Grey F, et al. Observation of microscale superlubricity
genated graphitelike carbon film[J]. Journal of Applied Physics, in graphite[J]. Physical Review Letters, 2012, 108(20): 205503. doi:
2008, 103(12): 123531. doi: 10.1063/1.2938747. 10.1103/physrevlett.108.205503.
[22] Gong Zhenbin, Shi Jing, Zhang Bin, et al. Graphene nano scrolls [35] Liu Shuwei, Wang Huaping, Xu Qiang, et al. Robust microscale
responding to superlow friction of amorphous carbon[J]. Carbon, superlubricity under high contact pressure enabled by graphene-
2017, 116: 310–317. doi: 10.1016/j.carbon.2017.01.106. coated microsphere[J]. Nature Communications, 2017, 8: 14029.
[23] Wang Chengbing, Yang Shengrong, Wang Qi, et al. Super-low doi: 10.1038/ncomms14029.
friction and super-elastic hydrogenated carbon films originated from [36] Li Jinjin, Gao Tianyang, Luo Jianbin. Superlubricity of graphite