Page 133 - 《摩擦学学报》2021年第3期
P. 133
422 摩 擦 学 学 报 第 41 卷
coatings by laser cladding for self-lubricating applications[J]. Optics 眉葭, 孙荣禄, 牛伟, 等. Ti 3 SiC 2 含量对激光熔覆自润滑涂层组织
& Laser Technology, 2020, 126: 106077. doi: 10.1016/j.optlastec. 及 性 能 的 影 响 [J]. 金 属 热 处 理 , 2018, 43(10): 179–184]. doi:
2020.106077. 10.13251/j.issn.0254-6051.2018.10.036.
[11] El-Raghy T, Blau P, Barsoum M W. Effect of grain size on friction [21] Li Xinxing, Shi Jianfeng, Wang Hongxia, et al. Role of tribo-layers
and wear behavior of Ti 3 SiC 2 [J]. Wear, 2000, 238(2): 125–130. doi: and tribo-oxides in dry sliding wear process of Ti6Al4V alloy[J].
10.1016/S0043-1648(99)00348-8. Surface Technology, 2019, 48(12): 233–239 (in Chinese) [李新星,
[12] Shi Xiaoliang, Wang Mang, Zhai Wenzheng, et al. Influence of 施剑峰, 王红侠, 等. Ti 6 Al 4 V合金干滑动磨损过程中摩擦层及摩
Ti 3 SiC 2 content on tribological properties of NiAl matrix self- 擦 氧 化 物 的 作 用 [J]. 表 面 技 术 , 2019, 48(12): 233–239]. doi:
lubricating composites[J]. Materials & Design, 2013, 45: 179–189. 10.16490/j.cnki.issn.1001-3660.2019.12.028.
doi: 10.1016/j.matdes.2012.08.060. [22] Zhao Yue, Feng Kai, Yao Chengwu, et al. Microstructure and
[13] Xin Benbin, Yu Youjun, Zhou Jiansong, et al. Effect of copper tribological properties of laser cladded self-lubricating nickel-base
molybdate on the lubricating properties of NiCrAlY laser clad composite coatings containing nano-Cu and h-BN solid
coating at elevated temperatures[J]. Surface and Coatings lubricants[J]. Surface and Coatings Technology, 2019, 359:
Technology, 2017, 313: 328–336. doi: 10.1016/j.surfcoat.2017. 485–494. doi: 10.1016/j.surfcoat.2018.12.017.
01.098. [23] Li Meijia. Research of laser cladding Ni60 Ti 3 SiC 2 self-lubricating
[14] Emmerlich J, Music D, Eklund P, et al. Thermal stability of Ti 3 SiC 2 coating on TC4[D]. Tianjin: Tianjin Polytechnic University, 2018(in
thin films[J]. Acta Materialia, 2007, 55(4): 1479–1488. doi: Chinese) [李眉葭. TC4激光熔覆Ni 60 Ti 3 SiC 2 自润滑涂层的研究
10.1016/j.actamat.2006.10.010. [D]. 天津: 天津工业大学, 2018].
[15] Wang Zhiping, Gao Yimin, Huang Xiaoyu, et al. Effects of Ti 3 SiC 2 [24] Hai Wanxiu, Ren Shufang, Meng Junhu, et al. Tribo-oxidation of
content on the microstructure and properties of heat self-mated Ti 3 SiC 2 at elevated temperatures and low speed[J].
treated(Ti 5 Si 3 +TiC)/TC4 composites[J]. Journal of Xi'an Jiaotong Tribology Letters, 2012, 48(3): 425–432. doi: 10.1007/s11249-012-
University, 2020, 54(7): 196–204 (in Chinese) [王芝萍, 高义民, 黄 0036-3.
孝余, 等. Ti 3 SiC 2 含量对热处理态(Ti 5 Si 3 +TiC)/TC4复合材料组织 [25] Li X, Zhang C H, Zhang S, et al. Manufacturing of Ti 3 SiC 2
及力学性能的影响[J]. 西安交通大学学报, 2020, 54(7): 196–204]. lubricated Co-based alloy coatings using laser cladding
[16] Wang Yonggang, Liu Hejian, Hui Li, et al. High temperature technology[J]. Optics & Laser Technology, 2019, 114: 209–215.
tribological properties of laser cladding in -situ carbide reinforced doi: 10.1016/j.optlastec.2019.02.001.
self-lubricating wear resistant composite coating[J]. Journal of [26] Gao Qiushi, Yan Hua, Qin Yang, et al. Laser cladding Ti-
Materials Engineering, 2019, 47(5): 72–78 (in Chinese) [王勇刚, 刘 Ni/TiN/TiW+TiS/WS 2 self-lubricating wear resistant composite
和剑, 回丽, 等. 激光熔覆原位自生碳化物增强自润滑耐磨复合涂 coating on Ti-6Al-4V alloy[J]. Optics & Laser Technology, 2019,
层的高温摩擦学性能[J]. 材料工程, 2019, 47(5): 72–78]. doi: 113: 182–191. doi: 10.1016/j.optlastec.2018.12.046.
10.11868/j.issn.1001-4381.2018.000409. [27] Zhang H, Zhang C H, Wang Q, et al. Effect of Ni content on
[17] Wu C L, Zhang S, Zhang C H, et al. Formation mechanism and stainless steel fabricated by laser melting deposition[J]. Optics &
phase evolution of in situ synthesizing TiC-reinforced 316L stainless Laser Technology, 2018, 101: 363–371. doi: 10.1016/j.optlastec.
steel matrix composites by laser melting deposition[J]. Materials 2017.11.032.
Letters, 2018, 217: 304–307. doi: 10.1016/j.matlet.2018.01.097. [28] Yin Cunhong, Liang Yilong, Liang Yu, et al. Formation of a self-
[18] Ghesmati Tabrizi S, Sajjadi S A, Babakhani A, et al. Analytical and lubricating layer by oxidation and solid-state amorphization of nano-
experimental investigation of the effect of SPS and hot rolling on the lamellar microstructures during dry sliding wear tests[J]. Acta
microstructure and flexural behavior of Ti6Al4V matrix reinforced Materialia, 2019, 166: 208–220. doi: 10.1016/j.actamat.2018.12.049.
with in situ TiB and TiC[J]. Journal of Alloys and Compounds, [29] Jordanovová V, Losertová M, Štencek M, et al. Microstructure and
2017, 692: 734–744. doi: 10.1016/j.jallcom.2016.09.026. properties of nanostructured coating on Ti6Al4V[J]. Materials, 2020,
[19] Li H, Peng L M, Gong M, et al. Processing and microstructure of 13(3): 708. doi: 10.3390/ma13030708.
Ti 3 SiC 2 /M (M = Ni or Co) composites[J]. Materials Letters, 2005, [30] Sun Yang, Li Wensheng, Hu Wei, et al. Tribological performance of
59(21): 2647–2649. doi: 10.1016/j.matlet.2005.04.010. nickel-alloy matrix self-lubricating coatings[J]. Tribology, 2018,
[20] Li Meijia, Sun Ronglu, Niu Wei, et al. Effect of Ti 3 SiC 2 content on 38(5): 562–569 (in Chinese) [孙洋, 李文生, 胡伟, 等. 镍基自润滑
microstructure and properties of laser clad self-lubricant coating[J]. 涂层的摩擦学性能[J]. 摩擦学学报, 2018, 38(5): 562–569]. doi:
Heat Treatment of Metals, 2018, 43(10): 179–184 (in Chinese) [李 10.16078/j.tribology.2018.05.009.