Page 137 - 《摩擦学学报》2021年第3期
P. 137
426 摩 擦 学 学 报 第 41 卷
10
(a) (b) Spring A, Dry
Spring A, Water
Spring B, Dry
8
Wear volume×10 −3 /mm 3 6 4 Normal load: 10 N
Spring B, Water
Slip amplitude: 50 μm
Frequency: 30 Hz
0 2
0 2×10 5 4×10 5 6×10 5 8×10 5 1×10 6
(a) Spring A (2) Spring B Cycles
(c) 80 (d) 50
Each wear volume of fuel rod aginst Each wear volume of fuel rod aginst
spring and dimple 40 spring and dimple
Wear volume/10 −3 mm 3 0.8 Flow rate: 5 m/s Wear volume/10 −3 mm 3 30 Flow rate: 5 m/s
Total wear volume of fuel rod
Total wear volume of fuel rod
40
Gap: 0.25 mm
Gap: 0.1 mm
20
0.6
0.4 10
0.2
0.0 0
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Time/h Time/h
[17] [16]
Fig. 3 (a)(b) Effect of support shape and (c) (d) grid-to-rod gap on fretting wear of zirconium alloy fuel cladding
图 3 (a)(b)支撑件形状 及(c)(d)格-棒间间隙 对锆合金燃料包壳微动磨损的影响
[17]
[16]
(a) 60 (b) 50
Each wear volume of fuel rod against
50 48.48 50.79 40 spring and dimple
48.73 Total wear volume of fuel rod
44.53 40.36 42.3 30 Flow rate: 5 m/s
Wear depth/μm 30 32.81 31.08 Wear volume/10 −3 mm 3 20 Gap: 0.25 mm
40
34.82
40.06
31.87
20
Stationary water 13.01 19.05
12.47
10 Water flow 10
Water/air flow 9.75
0 0
0 5 10 15 20 25 0 1 2 3 4 5 6
Time/hour Time/hour
(c) 50 (d) 4
Each wear volume of fuel rod against
spring and dimple 3 Grid A
40
Wear volume/10 −3 mm 3 30 Flow rate: 7 m/s Maximum fretting wear rate/(μm/day) 2 Non-oxidized rod
Total wear volume of fuel rod
Gap: 0.25 mm
Grid B
Non-oxidized rod
20
10 1 Grid A
Oxidized rod
0 0
0 1 2 3 4 5 6 0 50 100 150 200 250 300
Time/hour Grid-to-rod gap/μm
[18]
Fig. 4 Effect of (a) (b) (c) water environment [16, 22] and (d) oxide film on fretting wear of zirconium alloy fuel cladding
[18]
图 4 (a)(b)(c)水环境 [16, 22] 及(d)氧化膜 对锆合金燃料包壳微动磨损的影响