Page 77 - 《摩擦学学报》2021年第1期
P. 77

74                                      摩   擦   学   学   报                                 第 41 卷

                 Budapest, 1998, 187196.                           Wear, 2018, 406: 173–184. doi: 10.1016/j.wear.2018.01.007.
            [  3  ]  Jin Y, Ishida M, Namura A. Experimental simulation and prediction  [14]  Shi  Xintian,  Pang  Jingyue,  Zhang  Xin,  et  al.  Satellite  big  data
                 of wear of wheel flange and rail gauge corner[J]. Wear, 2011, 271(1-  analysis  based  on  integrated  limit  learning  machine[J].  Journal  of
                 2): 259–267. doi: 10.1016/j.wear.2010.10.032.     Instrumentation, 2018, 39(12): 81–91 (in Chinese) [史欣田, 庞景月,
            [  4  ]  Lin Fengtao. Research on wheel wear and wheel profile optimization  张新, 等. 基于集成极限学习机的卫星大数据分析[J]. 仪器仪表学
                 of  high  speed  train[D].  China  Academy  of  Railway  Sciences,  报, 2018, 39(12): 81–91].
                 2014(in Chinese) [林凤涛. 高速列车车轮磨耗及型面优化研究[D].    [15]  Xia  Yanqiu,  Xu  Dayi,  Feng  Xin,  et  al.  Type  identification  and
                 北京: 中国铁道科学研究院, 2014].                             content  prediction  of  lubricant  additives  based  on  limit  learning
            [  5  ]  Tao  Gongquan,  Li  Xia,  Deng  Yongguo,  et  al.  Wheel  wear  life  machine  and  optimization  algorithm[J].  Tribology,  2020,  40(1):
                 prediction  based  on  vehicle  lateral  motion  stability[J].  Journal  of  97–106 (in Chinese) [夏延秋, 徐大祎, 冯欣, 等. 基于极限学习机
                 Mechanical Engineering, 2013, 49(10): 28–34 (in Chinese) [陶功权,  和优化算法的润滑油添加剂种类识别与含量预测[J]. 摩擦学学
                 李霞, 邓永果, 等. 基于车辆横向运动稳定性的车轮磨耗寿命预测                  报, 2020, 40(1): 97–106]. doi: 10.16078/j.tribology.2019107.
                 [J]. 机械工程学报, 2013, 49(10): 28–34]. doi: 10.3901/JME.2013.10.  [16]  Niu Peifeng, Li Jinbai, Liu Nan, et al. NO x  emission optimization of
                 028.                                              boiler  based  on  improved  flower  pollination  algorithm  and  limit
            [  6  ]  Du  Wei.  Analysis  of  factors  affecting  wheel  rail  wear  in  curve  learning  machine[J].  Journal  of  Power  Engineering,  2018,  38(10):
                 section  of  heavy  haul  railway[D].  Chengdu:  Southwest  Jiaotong  782–787 (in Chinese) [牛培峰, 李进柏, 刘楠, 等. 基于改进花授粉
                 University, 2013(in Chinese) [杜伟. 重载铁路曲线段轮轨磨耗影    算法和极限学习机的锅炉NO x 排放优化[J]. 动力工程学报, 2018,
                 响因素分析[D]. 成都: 西南交通大学, 2013].                      38(10): 782–787].
            [  7  ]  Wang Xueping, Zhang Jun, Ma He. Research on prediction method  [17]  Zhang Wandong, Li Qingzhong, Li Ming, et al. Sea surface target
                 of wheel tread wear of high-speed train[J]. Tribology, 2018, 38(4):  detection  algorithm  of  high  frequency  ground  wave  radar  RD
                 462–467 (in Chinese) [王雪萍, 张军, 马贺. 高速列车车轮踏面磨      spectrum  based  on  optimal  error  self-tuning  limit  learning
                 耗预测方法的研究[J]. 摩擦学学报, 2018, 38(4): 462–467]. doi:   machine[J]. Acta Automatica Sinica, 2019: 1–13 (in Chinese) [张万
                 10.16078/j.tribology.2018.04.011.                 栋, 李庆忠, 黎明, 等. 基于最优误差自校正极限学习机的高频地
            [  8  ]  Zou  Xiaochun,  Zhang  Jun,  Sun  Chuanxi,  et  al.  Simulation  波雷达RD谱图海面目标检测算法[J]. 自动化学报, 2019: 1–13].
                 calculation  and  experimental  research  on  contact  between  doi: 10.16383/j.aas.c180210.
                 locomotive wheel tread and rail[J]. Tribology, 2020, 40(1): 128–134  [18]  Singh  Y,  Chandra  P.  A  class+1  sigmoidal  activation  functions  for
                 (in Chinese) [邹小春, 张军, 孙传喜, 等. 机车车轮踏面与钢轨接触        FFANNs[J].  Journal  of  Economic  Dynamics  and  Control,  2003,
                 的仿真计算及试验研究[J]. 摩擦学学报, 2020, 40(1): 128–134].      28(1): 183–187. doi: 10.1016/s0165-1889(02)00157-4.
                 doi: 10.16078/j.tribology.2019146.            [19]  Soderstrom  T,  Stewart  G  W.  On  the  numerical  properties  of  an
            [  9  ]  Wang  Wenjian.  Research  on  the  coupling  relationship  between  iterative  method  for  computing  the  moore-penrose  generalized
                 wheel  rail  rolling  contact  fatigue  and  wear  and  preventive  inverse[J].  SIAM  Journal  on  Numerical  Analysis,  1974,  11(1):
                 measures[D].  Chengdu:  Southwest  Jiaotong  University,  2008(in  61–74. doi: 10.2307/2156431.
                 Chinese) [王文健. 轮轨滚动接触疲劳与磨损耦合关系及预防措施           [20]  Shinozaki N, Sibuya M, Tanabe K, et al. Numerical algorithms for
                 研究[D]. 成都: 西南交通大学, 2008].                         the Moore-Penrose inverse of a matrix: Direct methods[J]. Annals of
            [10]  Kumar  A,  Singh  D.  Artificial  neural  network-based  wear  loss  the Institute of Statistical Mathematics, 1972, 24(1): 193–203. doi:
                 prediction  for  A390  aluminum  alloy[J].  Theor  Appl  Inf  Technol,  10.1007/BF02479751.
                 2008: 961–964.                                [21]  Huang G B, Zhou H, Ding X, et al. Extreme Learning Machine for
            [11]  Khudhair A, Talib N A. Neural network analysis for sliding wear of  Regression  and  Multiclass  Classification[C].  Systems  Man  and
                 13% Cr steel coatings by electric arc spraying[C]. First Engineering  Cybernetics,  2012,  42(2):  513-529.  doi:  10.1109/tsmcb.2011.2168
                 Scientific Conference College of Engineering–University of Diyal,  604
                 2010.                                         [22]  Xu W X, Geng Z Q, Zhu Q X, et al. A piecewise linear chaotic map
            [12]  Wang Ping, Wang Caiyun, Wang Wenjian, et al. Application of BP  and sequential quadratic programming based robust hybrid particle
                 network  in  prediction  of  rail  wear  based  on  PSO  Hybrid  swarm optimization[J]. Information Sciences, 2013, 218(1): 85–102.
                 Algorithm[J]. Mechanical Design, 2013, 30(8): 15–20 (in Chinese)  doi: 10.1016/j.ins.2012.06.003.
                 [王平, 王彩芸, 王文健, 等. 基于PSO混合算法优化BP网络在钢轨          [23]  Dehdari  V,  Oliver  D  S,  Deutsch  C  V,  et  al.  Comparison  of
                 磨损量预测中的应用[J]. 机械设计, 2013, 30(8): 15–20]. doi:     optimization algorithms for reservoir management with constraints-
                 10.3969/j.issn.1001-2354.2013.08.004.             A  case  study[J].  Journal  of  Petroleum  Science  and  Engineering,
            [13]  Shebani  A,  Iwnicki  S.  Prediction  of  wheel  and  rail  wear  under  2012, 100: 41–49. doi: 10.1016/j.petrol.2012.11.013.
                 different  contact  conditions  using  artificial  neural  networks[J].  [24]  Wu  Bin,  Liu  Bin,  Zeng  Zhiping,  et  al.  Experimental  study  on
   72   73   74   75   76   77   78   79   80   81   82