Page 146 - 《摩擦学学报》2020年第6期
P. 146
第 6 期 彭宪宇, 等: 海洋生物水下粘附机理及仿生研究 829
273(12): 1353–1366. doi: 10.1002/jmor.20063. [ 80 ] Donovan D, Carefoot T. Locomotion in the abalone haliotis
[ 65 ] Wang Y, Yang X, Chen Y, et al. A biorobotic adhesive disc for kamtschatkana: Pedal morphology and cost of transport[J]. Journal
underwater hitchhiking inspired by the remora suckerfish[J]. of Experimental Biology, 1997, 200(7): 1145–1153. doi:
Science Robotics, 2017, 2(10): e8072. doi: 10.1126/scirobotics. 10.1016/j.bmcl.2006.08.037.
aan8072. [ 81 ] Li J, Zhang Y, Liu S, et al. Insights into adhesion of abalone: A
[ 66 ] Cressey R F, Lachner E A. The parasitic copepod diet and life mechanical approach[J]. Journal of the Mechanical Behavior of
history of diskfishes (Echeneidae)[J]. Copeia, 1970(2): 310–318. Biomedical Materials, 2018, 77: 331–336. doi: 10.1016/j.jmbbm.
[ 67 ] Brunnschweiler J M, Sazima I. A new and unexpected host for the 2017.09.030.
sharksucker (Echeneis naucrates) with a brief review of the [ 82 ] Lin A Y M, Brunner R, Chen P Y, et al. Underwater adhesion of
echeneid-host interactions[J]. Marine Biodiversity Records, 2008, abalone: The role of van der waals and capillary forces[J]. Acta
1: e41. doi: 10.1017/S1755267206004349. Materialia, 2009, 57(14): 4178–4185. doi: 10.1016/j.actamat.2009.
[ 68 ] Weihs D, Fish F E, Nicastro A J. Mechanics of remora removal by 05.015.
dolphin spinning[J]. Marine Mammal Science, 2007, 23(3): [ 83 ] Kuanpradit C, Stewart M J, York P S, et al. Characterization of
707–714. doi: 10.1111/j.1748-7692.2007.00131.x. mucus-associated proteins from abalone (Haliotis)-candidates for
[ 69 ] Xiang Hong. Catfish and sharks[J]. Encyclopedia, 2012, 5: 48 chemical signaling[J]. The FEBS Journal, 2012, 279(3): 437–450.
(in Chinese) [湘泓. 鮣鱼与鲨鱼[J]. 百科知识, 2012, 5: 48]. doi: 10.1111/j.1742-4658.2011.08436.x.
[ 70 ] Nadler J H, Mercer A J, Culler M, et al. Structures and function of [ 84 ] Newar J, Ghatak A. Studies on the adhesive property of snail
remora adhesion[J]. MRS Online Proceedings Library Archive, adhesive mucus[J]. Langmuir, 2015, 31(44): 12155–12160. doi:
2013, 1498: 159–168. doi: 10.1557/opl.2013.105. 10.1021/acs.langmuir.5b03498.
[ 71 ] Priol E P. Note sur echeneis naucrates linne[J]. Revue Des Travaux [ 85 ] Zhong T, Min L, Wang Z, et al. Controlled self-assembly of
De Linstitut Des Pêches Maritimes, 1937, 10: 371–378. glycoprotein complex in snail mucus from lubricating liquid to
[ 72 ] Hora S L. The adhesive apparatus of the “sucking-fish”[J]. Nature, elastic fiber[J]. RSC Advances, 2018, 8(25): 13806–13812. doi:
1923, 111(2794): 668–668. doi: 10.1038/115048a0. 10.1039/C8RA01439F.
[ 73 ] Beckert M, Flammang B E, Nadler J H. Remora fish suction pad [ 86 ] Iwamoto M, Ueyama D, Kobayashi R. The advantage of mucus for
attachment is enhanced by spinule friction[J]. Journal of adhesive locomotion in gastropods[J]. Journal of Theoretical
Experimental Biology, 2015, 218(22): 3551–3558. doi: 10.1242/jeb. Biology, 2014, 353: 133–141. doi: 10.1016/j.jtbi.2014.02.024.
123893. [ 87 ] Shirtcliffe N J, McHale G, Newton M I. Wet adhesion and
[ 74 ] Lebesgue N, Da Costa G, Ribeiro R M, et al. Deciphering the adhesive locomotion of snails on anti-adhesive non-wetting
molecular mechanisms underlying sea urchin reversible adhesion: surfaces[J]. PLoS One, 2012, 7(5): e36983. doi: 10.1371/journal.
A quantitative proteomics approach[J]. Journal of Proteomics, pone.0036983.
2016, 138: 61–71. doi: 10.1016/j.jprot.2016.02.026. [ 88 ] Ma S, Wu Y, Zhou F. Bio-inspired synthetic wet adhesives: from
[ 75 ] Sadeghi A, Beccai L, Mazzolai B. Design and development of permanent bonding to reversible regulation[J]. Current Opinion in
innovative adhesive suckers inspired by the tube feet of sea Colloid & Interface Science, 2019, 47: 84–98. doi:
urchins[C]. In: 2012 4th IEEE RAS & EMBS International 10.1016/j.cocis.2019.11.010.
Conference on Biomedical Robotics and Biomechatronics [ 89 ] Lee B P, Dalsin J L, Messersmith P B. Synthesis and gelation of
(BioRob). IEEE, Rome, Italy, 2012, 617. DOPA-modified poly (ethylene glycol) hydrogels[J].
[ 76 ] Santos R, Gorb S, Jamar V, et al. Adhesion of echinoderm tube feet Biomacromolecules, 2002, 3(5): 1038–1047. doi: 10.1021/bm
to rough surfaces[J]. Journal of Experimental Biology, 2005, 025546n.
208(13): 2555–2567. doi: 10.1242/jeb.01683. [ 90 ] Burke S A, Ritter Jones M, Lee B P, et al. Thermal gelation and
[ 77 ] Flammang P. Adhesion in echinoderms[J]. Echinoderm Studies, tissue adhesion of biomimetic hydrogels[J]. Biomedical Materials,
1996, 5: 1–60. 2007, 2(4): 203–203. doi: 10.1088/1748-6041/2/4/001.
[ 78 ] Wolff T I. The design and fabrication of a biomimetic lifting [ 91 ] Matos-Pérez C R, White J D, Wilker J J. Polymer composition and
aid[D]. Enschede: University of Twente, 2017. substrate influences on the adhesive bonding of a biomimetic,
[ 79 ] Donovan D A, Taylor H H. Metabolic consequences of living in a cross-linking polymer[J]. Journal of the American Chemical
wave-swept environment: Effects of simulated wave forces on Society, 2012, 134(22): 9498–9505. doi: 10.1021/ja303369p.
oxygen consumption, heart rate, and activity of the shell adductor [ 92 ] Meredith H J, Jenkins C L, Wilker J J. Enhancing the adhesion of a
muscle of the abalone haliotis iris[J]. Journal of Experimental biomimetic polymer yields performance rivaling commercial
Marine Biology and Ecology, 2008, 354(2): 231–240. doi: glues[J]. Advanced Functional Materials, 2014, 24(21):
10.1016/j.jembe.2007.11.011. 3259–3267. doi: 10.1002/adfm.201303536.