Page 146 - 《摩擦学学报》2020年第6期
P. 146

第 6 期                          彭宪宇, 等: 海洋生物水下粘附机理及仿生研究                                       829

                 273(12): 1353–1366. doi: 10.1002/jmor.20063.  [  80  ]  Donovan  D,  Carefoot  T.  Locomotion  in  the  abalone  haliotis
            [  65  ]  Wang Y, Yang X, Chen Y, et al. A biorobotic adhesive disc for  kamtschatkana: Pedal morphology and cost of transport[J]. Journal
                 underwater  hitchhiking  inspired  by  the  remora  suckerfish[J].  of  Experimental  Biology,  1997,  200(7):  1145–1153.  doi:
                 Science  Robotics,  2017,  2(10):  e8072.  doi:  10.1126/scirobotics.  10.1016/j.bmcl.2006.08.037.
                 aan8072.                                      [  81  ]  Li J, Zhang Y, Liu S, et al. Insights into adhesion of abalone: A
            [  66  ]  Cressey  R  F,  Lachner  E  A.  The  parasitic  copepod  diet  and  life  mechanical  approach[J].  Journal  of  the  Mechanical  Behavior  of
                 history of diskfishes (Echeneidae)[J]. Copeia, 1970(2): 310–318.  Biomedical  Materials,  2018,  77:  331–336.  doi:  10.1016/j.jmbbm.
            [  67  ]  Brunnschweiler J M, Sazima I. A new and unexpected host for the  2017.09.030.
                 sharksucker  (Echeneis  naucrates)  with  a  brief  review  of  the  [  82  ]  Lin A Y M, Brunner R, Chen P Y, et al. Underwater adhesion of
                 echeneid-host  interactions[J].  Marine  Biodiversity  Records,  2008,  abalone:  The  role  of  van  der  waals  and  capillary  forces[J].  Acta
                 1: e41. doi: 10.1017/S1755267206004349.            Materialia, 2009, 57(14): 4178–4185. doi: 10.1016/j.actamat.2009.
            [  68  ]  Weihs D, Fish F E, Nicastro A J. Mechanics of remora removal by  05.015.
                 dolphin  spinning[J].  Marine  Mammal  Science,  2007,  23(3):  [  83  ]  Kuanpradit  C,  Stewart  M  J,  York  P  S,  et  al.  Characterization  of
                 707–714. doi: 10.1111/j.1748-7692.2007.00131.x.    mucus-associated  proteins  from  abalone  (Haliotis)-candidates  for
            [  69  ]  Xiang  Hong.  Catfish  and  sharks[J].  Encyclopedia,  2012,  5:  48  chemical signaling[J]. The FEBS Journal, 2012, 279(3): 437–450.
                 (in Chinese) [湘泓. 鮣鱼与鲨鱼[J]. 百科知识, 2012, 5: 48].    doi: 10.1111/j.1742-4658.2011.08436.x.
            [  70  ]  Nadler J H, Mercer A J, Culler M, et al. Structures and function of  [  84  ]  Newar  J,  Ghatak  A.  Studies  on  the  adhesive  property  of  snail
                 remora  adhesion[J].  MRS  Online  Proceedings  Library  Archive,  adhesive  mucus[J].  Langmuir,  2015,  31(44):  12155–12160.  doi:
                 2013, 1498: 159–168. doi: 10.1557/opl.2013.105.    10.1021/acs.langmuir.5b03498.
            [  71  ]  Priol E P. Note sur echeneis naucrates linne[J]. Revue Des Travaux  [  85  ]  Zhong  T,  Min  L,  Wang  Z,  et  al.  Controlled  self-assembly  of
                 De Linstitut Des Pêches Maritimes, 1937, 10: 371–378.  glycoprotein  complex  in  snail  mucus  from  lubricating  liquid  to
            [  72  ]  Hora S L. The adhesive apparatus of the “sucking-fish”[J]. Nature,  elastic  fiber[J].  RSC  Advances,  2018,  8(25):  13806–13812.  doi:
                 1923, 111(2794): 668–668. doi: 10.1038/115048a0.   10.1039/C8RA01439F.
            [  73  ]  Beckert M, Flammang B E, Nadler J H. Remora fish suction pad  [  86  ]  Iwamoto M, Ueyama D, Kobayashi R. The advantage of mucus for
                 attachment  is  enhanced  by  spinule  friction[J].  Journal  of  adhesive  locomotion  in  gastropods[J].  Journal  of  Theoretical
                 Experimental Biology, 2015, 218(22): 3551–3558. doi: 10.1242/jeb.  Biology, 2014, 353: 133–141. doi: 10.1016/j.jtbi.2014.02.024.
                 123893.                                       [  87  ]  Shirtcliffe  N  J,  McHale  G,  Newton  M  I.  Wet  adhesion  and
            [  74  ]  Lebesgue  N,  Da  Costa  G,  Ribeiro  R  M,  et  al.  Deciphering  the  adhesive  locomotion  of  snails  on  anti-adhesive  non-wetting
                 molecular mechanisms underlying sea urchin reversible adhesion:  surfaces[J].  PLoS  One,  2012,  7(5):  e36983.  doi:  10.1371/journal.
                 A  quantitative  proteomics  approach[J].  Journal  of  Proteomics,  pone.0036983.
                 2016, 138: 61–71. doi: 10.1016/j.jprot.2016.02.026.  [  88  ]  Ma S, Wu Y, Zhou F. Bio-inspired synthetic wet adhesives: from
            [  75  ]  Sadeghi  A,  Beccai  L,  Mazzolai  B.  Design  and  development  of  permanent bonding to reversible regulation[J]. Current Opinion in
                 innovative  adhesive  suckers  inspired  by  the  tube  feet  of  sea  Colloid  &  Interface  Science,  2019,  47:  84–98.  doi:
                 urchins[C].  In:  2012  4th  IEEE  RAS  &  EMBS  International  10.1016/j.cocis.2019.11.010.
                 Conference  on  Biomedical  Robotics  and  Biomechatronics  [  89  ]  Lee B P, Dalsin J L, Messersmith P B. Synthesis and gelation of
                 (BioRob). IEEE, Rome, Italy, 2012, 617.            DOPA-modified   poly   (ethylene   glycol)   hydrogels[J].
            [  76  ]  Santos R, Gorb S, Jamar V, et al. Adhesion of echinoderm tube feet  Biomacromolecules,  2002,  3(5):  1038–1047.  doi:  10.1021/bm
                 to  rough  surfaces[J].  Journal  of  Experimental  Biology,  2005,  025546n.
                 208(13): 2555–2567. doi: 10.1242/jeb.01683.   [  90  ]  Burke S A, Ritter Jones M, Lee B P, et al. Thermal gelation and
            [  77  ]  Flammang  P.  Adhesion  in  echinoderms[J].  Echinoderm  Studies,  tissue adhesion of biomimetic hydrogels[J]. Biomedical Materials,
                 1996, 5: 1–60.                                     2007, 2(4): 203–203. doi: 10.1088/1748-6041/2/4/001.
            [  78  ]  Wolff  T  I.  The  design  and  fabrication  of  a  biomimetic  lifting  [  91  ]  Matos-Pérez C R, White J D, Wilker J J. Polymer composition and
                 aid[D]. Enschede: University of Twente, 2017.      substrate  influences  on  the  adhesive  bonding  of  a  biomimetic,
            [  79  ]  Donovan D A, Taylor H H. Metabolic consequences of living in a  cross-linking  polymer[J].  Journal  of  the  American  Chemical
                 wave-swept  environment:  Effects  of  simulated  wave  forces  on  Society, 2012, 134(22): 9498–9505. doi: 10.1021/ja303369p.
                 oxygen consumption, heart rate, and activity of the shell adductor  [  92  ]  Meredith H J, Jenkins C L, Wilker J J. Enhancing the adhesion of a
                 muscle  of  the  abalone  haliotis  iris[J].  Journal  of  Experimental  biomimetic  polymer  yields  performance  rivaling  commercial
                 Marine  Biology  and  Ecology,  2008,  354(2):  231–240.  doi:  glues[J].  Advanced  Functional  Materials,  2014,  24(21):
                 10.1016/j.jembe.2007.11.011.                       3259–3267. doi: 10.1002/adfm.201303536.
   141   142   143   144   145   146   147   148   149   150   151