Page 147 - 《摩擦学学报》2020年第6期
P. 147
830 摩 擦 学 学 报 第 40 卷
[ 93 ] White J D, Wilker J J. Underwater bonding with charged polymer Soft Matter, 2012, 8(25): 6740–6743. doi: 10.1039/c2sm25421b.
mimics of marine mussel adhesive proteins[J]. Macromolecules, [101] Rao P, Sun T L, Chen L, et al. Tough hydrogels with fast, strong,
2011, 44(13): 5085–5088. doi: 10.1021/ma201044x. and reversible underwater adhesion based on a multiscale
[ 94 ] Shao H, Bachus K N, Stewart R J. A water-borne adhesive design[J]. Advanced Materials, 2018, 30(32): 1801884. doi:
modeled after the sandcastle glue of P. californica[J]. 10.1002/adma.201801884.
Macromolecular Bioscience, 2009, 9(5): 464–471. doi: 10.1002/ [102] Soltannia B, Sameoto D. Strong, reversible underwater adhesion
mabi.200800252.
via gecko-inspired hydrophobic fibers[J]. ACS Applied Materials
[ 95 ] Lim S, Choi Y S, Kang D G, et al. The adhesive properties of
& Interfaces, 2014, 6(24): 21995–22003. doi: 10.1021/am5075375.
coacervated recombinant hybrid mussel adhesive proteins[J].
[103] Baik S, Kim J, Lee H J, et al. Highly adaptable and biocompatible
Biomaterials, 2010, 31(13): 3715–3722. doi: 10.1016/j.biomaterials.
octopus-like adhesive patches with meniscus-controlled unfoldable
2010.01.063.
3D microtips for underwater surface and hairy skin[J]. Advanced
[ 96 ] Ju G, Cheng M, Guo F, et al. Elasticity-dependent fast underwater
Science, 2018, 5(8): 1800100. doi: 10.1002/advs.201800100.
adhesion demonstrated by macroscopic supramolecular
[104] Qiu Kun. Study on the high adsorption performance of octopus
assembly[J]. Angewandte Chemie International Edition, 2018,
suckers and the design of bionic suckers[D]. Changchun: Jilin
57(29): 8963–8967. doi: 10.1002/anie.201803632.
University, 2016(in Chinese) [邱昆. 章鱼吸盘高吸附性能研究及
[ 97 ] North M A, Del Grosso C A, Wilker J J. High strength underwater
仿生吸盘设计[D]. 长春: 吉林大学, 2016].
bonding with polymer mimics of mussel adhesive proteins[J]. ACS
[105] Bing Shan H, Li Wen W, Zhuang F, et al. Bio-inspired miniature
Applied Materials & Interfaces, 2017, 9(8): 7866–7872. doi:
suction cups actuated by shape memory alloy[J]. International
10.1021/acsami.7b00270.
Journal of Advanced Robotic Systems, 2009, 6(3): 151–160. doi:
[ 98 ] Zhao Q, Lee D W, Ahn B K, et al. Underwater contact adhesion
10.5772/7228.
and microarchitecture in polyelectrolyte complexes actuated by
[106] Paschal T, Bell M A, Sperry J, et al. Design, fabrication, and
solvent exchange[J]. Nature Materials, 2016, 15(4): 407–412. doi:
characterization of an untethered amphibious sea urchin-inspired
10.1038/nmat4539.
[ 99 ] Ma Y, Ma S, Wu Y, et al. Remote control over underwater robot[J]. IEEE Robotics and Automation Letters, 2019, 4(4):
dynamic attachment/detachment and locomotion[J]. Advanced 3348–3354. doi: 10.1109/LRA.2019.2926683.
Materials, 2018, 30(30): 1801595. doi: 10.1002/adma.201801595. [107] Lee H, Lee B P, Messersmith P B. A reversible wet/dry adhesive
[100] Cheng Q, Li M, Yang F, et al. An underwater pH-responsive inspired by mussels and geckos[J]. Nature, 2007, 448(7151):
superoleophobic surface with reversibly switchable oil-adhesion[J]. 338–341. doi: 10.1038/nature05968.