Page 116 - 《摩擦学学报》2020年第5期
P. 116
第 5 期 尹克样, 等: 烷基化液体碳点用于提高石蜡基基础油的摩擦学性能 671
Force [10] Xue Q, Liu W, Zhang Z. Friction and wear properties of a surface-
Steel ball
Shear direction Mending Rolling modified TiO 2 naoparticles as an additive in liquid paraffin[J]. Wear,
Lubricant
1997, 213(1-2): 29–32. doi: 10.1016/S0043-1648(97)00200-7.
Lubricant
Polishing
Disc Steel disc [11] Liu L, Huang Z, Huang P. Fabrication of coral-like MoS 2 and its
application in improving the tribological performance of liquid
Rubbing surface C Ole dots
paraffin[J]. Tribology International, 2016, 104(13): 303–308.
Fig. 10 Schematic diagram of the lubrication mechanism of
[12] Wu Y, Tsui W, Liu T. Experimental analysis of tribological
C Ole dots as an additive for paraffin
properties of lubricating oils with nanoparticle additives[J]. Wear,
图 10 C Ole dots作为石蜡基基础油润滑添加剂的
润滑机理示意图 2007, 262(7-8): 819–825. doi: 10.1016/j.wear.2006.08.021.
[13] Bonu V, Kumar N, Das A, et al. Enhanced lubricity of SnO 2
b.将碳点作为添加剂加到石蜡基基础油150 N中, nanoparticles dispersed polyolester nanofluid[J]. Industrial and
Engineering Chemistry Research, 2016, 55(10): 2696–2703. doi:
可以显著提高基础油的减摩抗磨效果.
10.1021/acs.iecr.5b03506.
c.在摩擦过程初期,碳点通过吸附作用,填充到摩
[14] Chen M, Liu B, Wang X, et al. Zero-charged catanionic lamellar
擦副表面的缺陷或微裂纹区域;在载荷及摩擦副相互
liquid crystals doped with fullerene C 60 for potential applications in
运动作用下,碳点与基底发生摩擦化学反应,从而在
tribology[J]. Soft Matter, 2017, 13(36): 6250–6258. doi: 10.1039/
基底表面形成了铁的氧化物及含碳润滑膜,阻止了摩 C7SM00800G.
擦副的直接接触,从而起到减摩抗磨作用. [15] Zhang W, Cao Y, Tian P, et al. Soluble, exfoliated two-dimensional
参 考 文 献 nanosheets as excellent aqueous lubricants[J]. ACS Applied
Materials and Interfaces, 2016, 47(8): 32440–32449.
[ 1 ] Dowson D. History of tribology[M]. London: Longman Group [16] Hu Y, Wang Y, Wang C, et al. One-pot pyrolysis preparation of
Limited, 1997.
carbon dots as eco-friendly nanoadditives of water-based lubricants[J].
[ 2 ] Zhou J, Wu Z, Zhang Z, et al. Tribological behavior and lubricating
Carbon, 2019, 152: 511–520. doi: 10.1016/j.carbon.2019.06.047.
mechanism of Cu nanoparticles in oil[J]. Tribology Letters, 2000,
[17] Liu X, Huang Z, Tang W, et al. Remarkable lubricating effect of
8(4): 213–218. doi: 10.1023/A:1019151721801.
ionic liquid modifed carbon dots as a kind of water-based lubricant
[ 3 ] Hernandez Battez A, Gonzalez R, Viesca J L, et al. CuO, ZrO 2 and
additives[J]. NANO: Brief Reports and Reviews, 2017, 12(9):
ZnO nanoparticles as antiwear additive in oil lubricants[J]. Wear,
1750108.
2008, 265(3-4): 422–428. doi: 10.1016/j.wear.2007.11.013.
[18] Tang J, Chen S, Jia Y, et al. Carbon dots as an additive for
[ 4 ] Padgurskas J, Rukuiza R, Prosycevas I, et al. Tribological properties
improving performance in water-based lubricants for amorphous
of lubricant additives of Fe, Cu and Co nanoparticles[J]. Tribology
carbon (a-C) coatings[J]. Carbon, 2020, 156: 272–281. doi: 10.1016/j.
International, 2013, 60(4): 224–232.
carbon.2019.09.055.
[ 5 ] Kalyani, Rastogi R B, Kumar D. Synthesis, characterization, and
[19] Tang W, Wang B, Li J, et al. Facile pyrolysis synthesis of ionic
tribological evaluation of SDS-stabilized magnesium-doped zinc
liquid capped carbon dots and subsequent application as the water-
oxide (Zn 0.88 Mg 0.12 O) nanoparticles as efficient antiwear lubricant
based lubricant additives[J]. Journal of Materials Science, 2019,
additives[J]. ACS Sustainable Chgemistry Engineering, 2016, 4(6):
54(2): 1171–1183. doi: 10.1007/s10853-018-2877-0.
3420–3428. doi: 10.1021/acssuschemeng.6b00472.
[20] Wang B, Tang W, Lu H, et al. Ionic liquid capped carbon dots as a
[ 6 ] Fan H, Hu T, Wan H, et al. Surface composition-lubrication design
high performance friction-reducing and antiwear additive for
of Al 2 O 3 /Ni laminated composites-Part II: Tribological behavior of
poly(ethylene glycol)[J]. Journal of Materials Chemistry A, 2016,
LaF 3 -doped MoS 2 composite coating in a water environment[J].
4(19): 7257–7265. doi: 10.1039/C6TA01098A.
Tribology International, 2016, 96(5): 258–268.
[21]
[ 7 ] Wang D, Zhu D, Li H, et al. Tribological properties of muscovite/ Huang H, Hu H, Qiao S, et al. Carbon quantum dot/CuS x
nanocomposites towards highly efficient lubrication and metal wear
La 2 O 3 composite powders as lubricant additives[J]. Tribology
Transactions, 2015, 58(4): 577–583. doi: 10.1080/10402004.2014. repair[J]. Nanoscale, 2015, 7(26): 11321–11327. doi: 10.1039/C5NR
996309. 01923K.
[ 8 ] Kim D, Archer L. Nanoscale organic-inorganic hybrid lubricants[J]. [22] Fan X, Li W, Fu H, et al. Probing the function of solid nanoparticle
Langmuir, 2011, 27(6): 3083–3094. doi: 10.1021/la104937t. structure under boundary lubrication[J]. ACS Sustainable Chemistry
[ 9 ] Guo Y, Zhang L, Zhang G, et al. High lubricity and electrical Engineering, 2017, 5(5): 4223–4233. doi: 10.1021/acssuschemeng.
responsiveness of solvent-free ionic SiO 2 nanofluids[J]. Journal of 7b00213.
Materials Chemistry A, 2018, 6(6): 2817–2827. doi: 10.1039/C7TA [23] Ma W, Gong Z, Gao K, et al. Superlubricity achieved by carbon
09649F. quantum dots in ionic liquid[J]. Materials Letters, 2017, 195: