Page 116 - 《摩擦学学报》2020年第5期
P. 116

第 5 期                  尹克样, 等: 烷基化液体碳点用于提高石蜡基基础油的摩擦学性能                                       671

                       Force                                   [10]  Xue Q, Liu W, Zhang Z. Friction and wear properties of a surface-
                                       Steel ball
             Shear direction    Mending        Rolling             modified TiO 2  naoparticles as an additive in liquid paraffin[J]. Wear,
                                       Lubricant
                                                                   1997, 213(1-2): 29–32. doi: 10.1016/S0043-1648(97)00200-7.
             Lubricant
                                     Polishing
                        Disc                 Steel disc        [11]  Liu  L,  Huang  Z,  Huang  P.  Fabrication  of  coral-like  MoS 2   and  its
                                                                   application  in  improving  the  tribological  performance  of  liquid
                                  Rubbing surface  C Ole  dots
                                                                   paraffin[J]. Tribology International, 2016, 104(13): 303–308.
             Fig. 10    Schematic diagram of the lubrication mechanism of
                                                               [12]  Wu  Y,  Tsui  W,  Liu  T.  Experimental  analysis  of  tribological
                       C Ole  dots as an additive for paraffin
                                                                   properties  of  lubricating  oils  with  nanoparticle  additives[J].  Wear,
                 图 10    C Ole  dots作为石蜡基基础油润滑添加剂的
                             润滑机理示意图                               2007, 262(7-8): 819–825. doi: 10.1016/j.wear.2006.08.021.
                                                               [13]  Bonu  V,  Kumar  N,  Das  A,  et  al.  Enhanced  lubricity  of  SnO 2
                b.将碳点作为添加剂加到石蜡基基础油150 N中,                          nanoparticles  dispersed  polyolester  nanofluid[J].  Industrial  and
                                                                   Engineering  Chemistry  Research,  2016,  55(10):  2696–2703.  doi:
            可以显著提高基础油的减摩抗磨效果.
                                                                   10.1021/acs.iecr.5b03506.
                c.在摩擦过程初期,碳点通过吸附作用,填充到摩
                                                               [14]  Chen  M,  Liu  B,  Wang  X,  et  al.  Zero-charged  catanionic  lamellar
            擦副表面的缺陷或微裂纹区域;在载荷及摩擦副相互
                                                                   liquid crystals doped with fullerene C 60  for potential applications in
            运动作用下,碳点与基底发生摩擦化学反应,从而在
                                                                   tribology[J].  Soft  Matter,  2017,  13(36):  6250–6258.  doi:  10.1039/
            基底表面形成了铁的氧化物及含碳润滑膜,阻止了摩                                C7SM00800G.
            擦副的直接接触,从而起到减摩抗磨作用.                                [15]  Zhang W, Cao Y, Tian P, et al. Soluble, exfoliated two-dimensional
            参 考 文 献                                                nanosheets  as  excellent  aqueous  lubricants[J].  ACS  Applied
                                                                   Materials and Interfaces, 2016, 47(8): 32440–32449.
            [  1  ]  Dowson  D.  History  of  tribology[M].  London:  Longman  Group  [16]  Hu  Y,  Wang  Y,  Wang  C,  et  al.  One-pot  pyrolysis  preparation  of
                 Limited, 1997.
                                                                   carbon dots as eco-friendly nanoadditives of water-based lubricants[J].
            [  2  ]  Zhou J, Wu Z, Zhang Z, et al. Tribological behavior and lubricating
                                                                   Carbon, 2019, 152: 511–520. doi: 10.1016/j.carbon.2019.06.047.
                 mechanism  of  Cu  nanoparticles  in  oil[J].  Tribology  Letters,  2000,
                                                               [17]  Liu  X,  Huang  Z,  Tang  W,  et  al.  Remarkable  lubricating  effect  of
                 8(4): 213–218. doi: 10.1023/A:1019151721801.
                                                                   ionic liquid modifed carbon dots as a kind of water-based lubricant
            [  3  ]  Hernandez Battez A, Gonzalez R, Viesca J L, et al. CuO, ZrO 2  and
                                                                   additives[J].  NANO:  Brief  Reports  and  Reviews,  2017,  12(9):
                 ZnO  nanoparticles  as  antiwear  additive  in  oil  lubricants[J].  Wear,
                                                                   1750108.
                 2008, 265(3-4): 422–428. doi: 10.1016/j.wear.2007.11.013.
                                                               [18]  Tang  J,  Chen  S,  Jia  Y,  et  al.  Carbon  dots  as  an  additive  for
            [  4  ]  Padgurskas J, Rukuiza R, Prosycevas I, et al. Tribological properties
                                                                   improving  performance  in  water-based  lubricants  for  amorphous
                 of lubricant additives of Fe, Cu and Co nanoparticles[J]. Tribology
                                                                   carbon (a-C) coatings[J]. Carbon, 2020, 156: 272–281. doi: 10.1016/j.
                 International, 2013, 60(4): 224–232.
                                                                   carbon.2019.09.055.
            [  5  ]  Kalyani,  Rastogi  R  B,  Kumar  D.  Synthesis,  characterization,  and
                                                               [19]  Tang  W,  Wang  B,  Li  J,  et  al.  Facile  pyrolysis  synthesis  of  ionic
                 tribological  evaluation  of  SDS-stabilized  magnesium-doped  zinc
                                                                   liquid capped carbon dots and subsequent application as the water-
                 oxide  (Zn 0.88 Mg 0.12 O)  nanoparticles  as  efficient  antiwear  lubricant
                                                                   based  lubricant  additives[J].  Journal  of  Materials  Science,  2019,
                 additives[J]. ACS Sustainable Chgemistry Engineering, 2016, 4(6):
                                                                   54(2): 1171–1183. doi: 10.1007/s10853-018-2877-0.
                 3420–3428. doi: 10.1021/acssuschemeng.6b00472.
                                                               [20]  Wang B, Tang W, Lu H, et al. Ionic liquid capped carbon dots as a
            [  6  ]  Fan H, Hu T, Wan H, et al. Surface composition-lubrication design
                                                                   high  performance  friction-reducing  and  antiwear  additive  for
                 of Al 2 O 3 /Ni laminated composites-Part II: Tribological behavior of
                                                                   poly(ethylene  glycol)[J].  Journal  of  Materials  Chemistry  A,  2016,
                 LaF 3 -doped  MoS 2   composite  coating  in  a  water  environment[J].
                                                                   4(19): 7257–7265. doi: 10.1039/C6TA01098A.
                 Tribology International, 2016, 96(5): 258–268.
                                                               [21]
            [  7  ]  Wang D, Zhu D, Li H, et al. Tribological properties of muscovite/  Huang  H,  Hu  H,  Qiao  S,  et  al.  Carbon  quantum  dot/CuS x
                                                                   nanocomposites towards highly efficient lubrication and metal wear
                 La 2 O 3   composite  powders  as  lubricant  additives[J].  Tribology
                 Transactions,  2015,  58(4):  577–583.  doi:  10.1080/10402004.2014.  repair[J]. Nanoscale, 2015, 7(26): 11321–11327. doi: 10.1039/C5NR
                 996309.                                           01923K.
            [  8  ]  Kim D, Archer L. Nanoscale organic-inorganic hybrid lubricants[J].  [22]  Fan X, Li W, Fu H, et al. Probing the function of solid nanoparticle
                 Langmuir, 2011, 27(6): 3083–3094. doi: 10.1021/la104937t.  structure under boundary lubrication[J]. ACS Sustainable Chemistry
            [  9  ]  Guo  Y,  Zhang  L,  Zhang  G,  et  al.  High  lubricity  and  electrical  Engineering,  2017,  5(5):  4223–4233.  doi:  10.1021/acssuschemeng.
                 responsiveness  of  solvent-free  ionic  SiO 2   nanofluids[J].  Journal  of  7b00213.
                 Materials Chemistry A, 2018, 6(6): 2817–2827. doi: 10.1039/C7TA  [23]  Ma  W,  Gong  Z,  Gao  K,  et  al.  Superlubricity  achieved  by  carbon
                 09649F.                                           quantum  dots  in  ionic  liquid[J].  Materials  Letters,  2017,  195:
   111   112   113   114   115   116   117   118   119   120   121