Page 100 - 《摩擦学学报》2020年第5期
P. 100
第 5 期 吴可欣, 等: 阻旋栅对梳齿密封动静特性影响研究 655
程度(l>4.25 mm)时,对周向速度影响则越来越小. 预 Hawaii, USA, 2000.
旋比的增加将导致密封内流体周向速度逐渐增加,阻 [11] Da Soghe R, Micio M, Andreini A, et al. Numerical characterization
of swirl brakes for high pressure centrifugal compressors[C]//
旋栅的增加可使密封腔室周向速度降低约75%(n=90).
Proceedings of ASME Turbo Expo 2013: Turbine Technical
b. 阻旋栅可有效提高密封系统稳定性. 与传统无 Conference and Exposition, Texas, USA, 2013.
阻旋栅梳齿密封相比,具有阻旋栅的梳齿密封直接阻 [12] Baldassarre L, Bernocchi A, Fontana M, et al. Optimization of Swirl
尼增加、交叉刚度降低,进而有效阻尼提高. 阻旋栅间 Brake Design and Assessment of its Stabilizing Effect on
Compressor Rotordynamic Performance[C]//43rd Turbomachinery
隙为s=0.20 mm、长度为l=3.25 mm、数量n=90时密封
& 30th Pump Users Symposia, Texas, USA, 2014.
有效阻尼较大,系统稳定性最好.
[13] Untaroiu A, Jin H X, Fu G, et al. The effects of fluid preswirl and
参 考 文 献 swirl brakes design on the performance of labyrinth seals[J]. Journal
of Engineering for Gas Turbines and Power, 2018, 140(8): 82503.
[ 1 ] Jing Jianping, Meng Guang, Zhao Mei, et al. Survey and outlook on
doi: 10.1115/1.4038914.
the research of the steam excitation of superior ultra-critical steam
[14] Childs D W, Mclean J E Jr, Zhang M, et al. Rotordynamic
turbine[J]. Turbine Technology, 2004, 46(6): 405–407 (in Chinese)
performance of a negative-swirl brake for a tooth-on-stator labyrinth
[荆建平, 孟光, 赵玫, 等. 超超临界汽轮机汽流激振研究现状与展
seal[J]. Journal of Engineering for Gas Turbines and Power, 2015,
望[J]. 汽轮机技术, 2004, 46(6): 405–407]. doi: 10.3969/j.issn.1001-
138(6): 062505. doi: 10.1115/gt2014-25577.
5884.2004.06.002.
[15] Chen Yaoxing, Li Zhigang, Li Jun. Effects of inlet preswirl on the
[ 2 ] He Lidong, Xia Songbo. Review on aerodynamic excitation and its
flow excitation rotordynamic characteristics of labyrinth seal[J].
elimination method in the rotor seal system[J]. Journal of Vibration
Lubrication Engineering, 2017, 42(11): 1–6 (in Chinese) [陈尧兴,
Engineering, 1999, 12(1): 64–72 (in Chinese) [何立东, 夏松波. 转
李志刚, 李军. 进口预旋对高压迷宫密封流体激振转子动力特性
子密封系统流体激振及其减振技术研究简评[J]. 振动工程学报,
的影响[J]. 润滑与密封, 2017, 42(11): 1–6]. doi: 10.3969/j.issn.
1999, 12(1): 64–72].
0254-0150.2017.11.001.
[ 3 ] Cao Shuqian, Chen Yushu. A review of modern rotor/seal
[16] Guo Yongxue, He Lidong. A review of anti-swirl sealing
dynamics[J]. Engineering Mechanics, 2009, 26(Supplement Ⅱ):
technology[J]. Chemical Engineering & Equipment, 2018, 10:
69–79 (in Chinese) [曹树谦, 陈予恕. 现代密封转子动力学研究综
242–245 (in Chinese) [郭咏雪, 何立东. 反旋流密封技术研究综述
述[J]. 工程力学, 2009, 26(增刊Ⅱ): 69–79].
[J]. 化学工程与装备, 2018, 10: 242–245].
[ 4 ] Alford J S. Protecting turbomachinery from self-excited rotor
[17] Sun Dan, Wang Shuang, Ai Yanting, et al. Numerical and
whirl[J]. Journal of Engineering for Power, 1965, 87(4): 333–343.
experimental research on performance of swirl brakes for static and
doi: 10.1115/1.3678270.
dynamic characteristics of seals[J]. Acta aeronautica et Astronautica
[ 5 ] Rosenberg C. Investigating aerodynamics transverse force in
Sinica, 2015, 36(9): 3002–3011 (in Chinese) [孙丹, 王双, 艾延廷,
labyrinth seals in cases involving rotor eccentricity C E Tran 083[J].
等. 阻旋栅对密封静力与动力特性影响的数值分析与实验研究
Translated from Energnmashinostrojohic, 1974, 8: 15–17.
[J]. 航空学报, 2015, 36(9): 3002–3011].
[ 6 ] Ding Xuejun, Feng Huiwen, Huang Zhenan. Steam turbine
[18] Ji Dawei, Li Jun, Ning Xiao. Investigations on the effect of inlet
clearance-excited vibration[J]. Thermal Power Generation, 1995, 3:
swirl brake structure on the rotor dynamic coefficients of labyrinth
21–29 (in Chinese) [丁学俊, 冯慧雯, 黄镇安. 汽轮机中的间隙激
seal[J]. Thermal Turbine, 2017, 46(3): 164–168 (in Chinese) [冀大
振[J]. 热力发电, 1995, 3: 21–29].
伟, 李军, 宁宵. 防旋板对迷宫密封转子动力特性影响的研究[J].
[ 7 ] Zheng Shuiying, Sheng Qinggen. Studies on the excitation vibration
热力透平, 2017, 46(3): 164–168].
and vibration-eliminating measures of the fluid flow in labyrinth
[19] Sun Dan, Ding Junjie, Shao Zengde, et al. Numerical study on flow
seals[J]. Chemical Engineering & Machinery, 1998, 25(2): 76–81
(in Chinese) [郑水英, 沈庆根. 迷宫密封流体激振消振措施的研究 field characteristics of a new labyrinth seal with cascade in rotor[J].
Journal of Shenyang Aerospace University, 2018, 35(3): 10–16
[J]. 化工机械, 1998, 25(2): 76–81].
(in Chinese) [孙丹, 丁俊杰, 邵增德, 等. 新型转子含叶栅的迷宫密
[ 8 ] Benckert H, Wachter J. Flow induced spring coefficients of
封流场特性数值研究[J]. 沈阳航空航天大学学报, 2018, 35(3):
labyrinth seals for application in rotordynamics[C]//Problems in
10–16]. doi: 10.3969/j.issn.2095-1248.2018.03.002.
High-Performance Turbomachinery, Texas, USA: Texas A&M
[20] Li Z G, Li J, Yan X. Multiple frequencies elliptical whirling orbit
University, 1980: 189-212
model and transient rans solution approach to rotordynamic
[ 9 ] Nielsen K K, Van den Braembussche R A, Myllerup C M.
coefficients of annual gas seals prediction[J]. Journal of Vibration
Optimization of swirl brakes by means of a 3D Navier-stokes
solver[C]//International Gas Turbine & Aeroengine Congress & and Acoustics, 2013, 135(3): 031005. doi: 10.1115/1.4023143.
Exposition, Stockholm, Sweden, 1998. [21] Li J M, De Choudhury P, Kushner F. Evaluation of centrifugal
[10] Moore J J, Hill D L. Design of swirl brakes for high pressure compressor stability margin and investigation of antiswirl
centrifugal compressors using CFD techniques[C]//8th International mechanism[C]//Proceeding of the 32nd Turbomachinery
Symposium on Transport Phenomena and Rotating Machinery, Symposium, Texas, USA, 2003.