Page 54 - 《摩擦学学报》2020年第3期
P. 54
320 摩 擦 学 学 报 第 40 卷
A
1 mm
B
A-B
100 μm
Fig. 11 The cross-section morphologies of worn 690 alloy,D=100 μm,T=90 ℃,690 alloy/06Cr13
图 11 690合金的剖面分析结果,D=100 μm,T=90 ℃,配副材料06Cr13
致. 总体而言,690合金磨损不严重. 发生器传热管的微振磨损及其防护[J]. 核安全, 2006, (3): 27–32].
doi: 10.16432/j.cnki.1672-5360.2006.03.007.
3 结论 [ 5 ] Ding Xunshen. The design safety of steam generators in NPP[J].
Nuclear Safe, 2005, (2): 1–6 (in Chinese) [丁训慎. 核电厂蒸汽发生
a. 随着温度和位移的增加,690合金表面的磨屑
器设计中的安全问题[J]. 核安全, 2005, (2): 1–6]. doi: 10.16432/
增加,氧化程度加剧,磨损加剧;主要的磨损机制为磨
j.cnki.1672-5360.2005.02.001.
粒磨损和剥层,且随着温度的增加,剥层在损伤中所
[ 6 ] Tang Hui. Fretting damage one of world-wide difficulties in the field
起的作用加剧. 由于水的作用,690合金的磨损轻微, of nuclear power equipment and structures for a long-term[J].
其剖面未见裂纹和磨屑层. Nuclear Power Engineering, 2000, 21(3): 221–231 (in Chinese) [唐
b. 当配副材料为405不锈钢时,690合金的磨损较 辉. 世界核电设备与结构将长期面临的一个问题—微动损伤[J].
严重. 这可能是由于工况相同时,06Cr13的磨损比 核 动 力 工 程 , 2000, 21(3): 221 –231]. doi: 10.3969/j.issn.0258-
405不锈钢严重,06Cr13形成大量磨屑,起固体润滑和 0926.2000.03.008.
[ 7 ] Zhang Xiaoyu, Ren Pingdi, Zhang Yafei, et al. Fretting wear
承重的作用,减少690合金的磨损. 此外,405不锈钢的
behavior of Incoloy 800 alloy at high temperature[J]. The Chinese
磨屑尺寸较小,06Cr13磨痕表面存在大量的剥层裂纹.
Journal of Nonferrous Metals, 2010, 20(8): 1545–1551 (in Chinese)
c. 磨痕表面的化学成分分析表明,06Cr13表面的 [张晓宇, 任平弟, 张亚非, 等. Incoloy800 合金的高温微动磨损特
材料在剥落之前,由于相对运动已被氧化;690合金的 性[J]. 中国有色金属学报, 2010, 20(8): 1545–1551]. doi: 10.19476/
EPMA线扫描结果表明,在磨损区域中氧和铁的含量 j.ysxb.1004.0609.2010.08.016.
变化呈现锯齿状;黏着磨损致使的材料转移,690合金 [ 8 ] Zheng Jinsong, Zhao Lina, Li Gan. The effect of contact force and
表面有贫镍区. temperature on the fatigue life of Inconel 690 alloy[J]. Materials
Protection, 2015, 48(3): 27–30 (in Chinese) [郑劲松, 赵丽娜, 厉淦.
参 考 文 献
接触应力和高温环境对Inconel 690合金微动疲劳寿命的影响[J].
[ 1 ] M Helmi Attia. Fretting fatigue and wear damage of structural 材料保护, 2015, 48(3): 27–30]. doi: 10.16078/j.tribology.2019124.
components in nuclear power station-fitness for service and life [ 9 ] Jae-do Kwon, Han-kyu Jeung, Il-sup Chung, et al. A study on
management perspective[J]. Tribology, 2006, 39(2): 1294 –1304. fretting fatigue characteristics of Inconel 690 at high temperature[J].
doi: 10.1016/j.triboint.2006.02.052. Tribology International, 2011, 44: 1483 –1487. doi:
[ 2 ] Che Honglong, Lei Mingkai. Fretting wear damage of steam 10.1016/j.triboint.2010.11.006.
generator tubes and its prediction modeling[J]. China Nuclear [10] Li Jie Lu Yonghao. Displacement amplitude effects on the fretting
Power, 2013, 6(2): 115–119 (in Chinese) [车宏龙, 雷明凯. 蒸汽发 wear behavior and mechanism of Inconel600 alloy[J]. Journal of
生器传热管的微动磨损损伤及预测模型[J]. 中国核电, 2013, 6(2): University of Science and Technology Beijing, 2014, 36(10):
115–119]. 1328–1334 (in Chinese) [李杰, 陆永浩. 位移幅值对Inconel600 合
[ 3 ] Rubiolo P R, Young M Y. On the factors affecting the fretting-wear 金微动磨损性能和机制的影响[J]. 北京科技大学学报, 2014,
risk of PWR fuel assemblies[J]. Nuclear Engineering and Design, 36(10): 1328–1334]. doi: 10.13374/j.issn1001-053x.2014.10.008.
2009, 239(1): 68–79. doi: 10.1016/j.nucengdes.2008.08.021. [11] Zhang X, Ren P, Peng J, et al. Fretting wear behavior of Inconel 690
[ 4 ] Ding Xunshen. Fretting wear and protection of steam generator in hydrazine environments[J]. Transactions of Nonferrous Metals
tubes[J]. Nuclear Safe, 2006, (3): 27–32 (in Chinese) [丁训慎. 蒸汽 Society of China, 2014, 24(2): 360 –367. doi: 10.1016/S1003-