Page 63 - 《高原气象》2023年第1期
P. 63
1 期 鲍 艳等:全球2 ℃温升背景下青藏高原植被对气候变化的响应 59
朴世龙, 张宪洲, 汪涛, 等, 2019. 青藏高原生态系统对气候变化的 因分析[J]. 高原气象, 38(1): 29-41. DOI: 10. 7522/j. issn.
响应及其反馈[J]. 科学通报, 64(27): 2842-2855. DOI: 10. 1000-0534. 2018. 00066.
1360/TB-2019-0074. 赵彦茜, 肖登攀, 柏会子, 2019. CMIP5 气候模式对中国未来气候
任宏昌, 史学丽, 张祖强, 2014. 2003-2009 年中国地区叶面积指数 变化的预估和应用[J]. 气象科技, 47(4): 608-621. DOI: 10.
变化特征分析[J]. 气象科学, 34(2): 171-178. DOI: 10. 3969/ 19517/j. 1671-6345. 20180431.
2013jms. 0055. 张含玉, 方怒放, 史志华, 2016. 黄土高原植被覆盖时空变化及其
王青霞, 吕世华, 鲍艳, 等, 2014. 青藏高原不同时间尺度植被变化 对气候因子的响应[J]. 生态学报, 36(13): 3960-3968. DOI:
特征及其与气候因子的关系分析[J], 高原气象, 33(2): 301- 10. 5846/stxb201506281310.
312. DOI: 10. 7522/j. issn. 1000-0534. 2014. 00002. 张莉, 丁一汇, 吴统文, 等, 2013. CMIP5 模式对 21 世纪全球和中
王希群, 马履一, 贾忠奎, 等, 2005. 叶面积指数的研究和应用进展 国年平均地表气温变化和 2 ℃升温阈值的预估[J]. 气象学报,
[J]. 生 态 学 杂 志 , 24(5): 537-541. DOI: 10. 3321/j. issn: 71(6): 1047-1060. DOI: 10. 11676/qxxb2013. 087.
1000-4890. 2005. 05. 015. 张宇欣, 李育, 朱耿, 2019. 青藏高原海拔要素对温度、 降水和气候
王晓欣, 姜大膀, 郎咸梅, 2019. CMIP5多模式预估的 1. 5 ℃升温背 型分布格局的影响[J]. 冰川冻土, 41(3): 505-515. DOI: 10.
景下中国气温和降水变化[J]. 大气科学, 43(5): 1158-1170. 7522/j. issn. 1000-0240. 2019. 0513.
DOI: 10. 3878/j. issn. 1006-9895. 1810. 18225. 周梦子, 周广胜, 吕晓敏, 等, 2018. 基于 CMIP5 耦合气候模式的
王晓云, 2014. 青藏高原多年冻土区高寒草地对气候变化的响应 1. 5 ℃和 2 ℃升温阈值出现时间研究[J]. 气候变化研究进展,
[D]. 北京: 中国科学院大学. 14 (3): 221-227. DOI: 10. 12006/j. issn. 1673 -1719. 2017. 230.
王玉琦, 2018. 21 世纪青藏高原植被变化的预测[D]. 南京: 南京信 朱再春, 刘永稳, 刘祯, 等, 2018. CMIP5模式对未来升温情景下全球
息工程大学. 陆地生态系统净初级生产力变化的预估[J]. 气候变化研究进展,
王玉琦, 鲍艳, 南素兰, 2019. 青藏高原未来气候变化的热动力成 14(1): 31-39. DOI: 10. 12006/j. issn. 1673-1719. 2017. 042.
Vegetation over the Qinghai-Xizang Plateau in Response to Climate
Change with a 2 ℃ Global Warming
1, 2
1, 2
BAO Yan , WEI Yuchen , NAN Sulan , ZANG Wenchuan 1
3
(1. Wuxi University , Wuxi 214105, Jiangsu, China;
2. Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and
Environment Change(ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD),
Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, Jiangsu, China;
3. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China)
Abstract: Global warming has brought about a series of economic and environmental problems, seriously threat‐
ening the survival and development of human beings. The Paris agreement calls for limiting global warming to
2 ℃ for industrialization by the end of the century. Based on model simulations from CMIP5 in RCP8. 5, vegeta‐
tion leaf area index (LAI) over the Qinghai-Xizang Plateau (QXP), vegetation carbon storage (NPP), the dom‐
inating land cover fraction and natural vegetation types in response to the warming climate are investigated. The
main conclusions are as follows: LAI significantly increases under 2 ℃ warming, the QXP becomes green. NPP
also increased significantly. Three river source regions have the most rapid growth rate, indicating that the car‐
bon storage capacity of vegetation on the plateau is increasing. The bare soil decreases rapidly, while the grass‐
land slowly increases and expands; The declined forest fraction is stable during 2 ℃ warming period. The overall
vegetation coverage of the plateau increased and the vegetation covered area increases. Temperature is the main
controlling factor affecting the change of the plateau vegetation ecosystem. In the context of global warming,
vegetation has a better correlation with changes in temperature and precipitation, indicating that vegetation
growth is more dependent on climate factors, and vegetation growth may be more sensitive to climate change.
Key words: Qinghai-Xizang Plateau (QXP); temperature increase of 2 ℃; vegetation change; leaf area index
(LAI); CMIP5