Page 165 - 《爆炸与冲击》2025年第12期
P. 165

第 45 卷       刘振华,等: 基于非常规态近场动力学对混凝土动态拉伸断裂的数值模拟研究                               第 12 期

                    penetration  followed  by  charge  explosion:  experimental  and  numerical  investigation  [J].  International  Journal  of  Impact
                    Engineering, 2023, 177: 104595. DOI: 10.1016/j.ijimpeng.2023.104595.
               [12]   SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces [J]. Journal of the Mechanics and
                    Physics of Solids, 2000, 48(1): 175–209. DOI: 10.1016/S0022-5096(99)00029-0.
               [13]   SILLING S A, EPTON M, WECKNER O, et al. Peridynamic states and constitutive modeling [J]. Journal of Elasticity, 2007,
                    88(2): 151–184. DOI: 10.1007/s10659-007-9125-1.
               [14]   LIU X, KONG X Z, FANG Q, et al. Peridynamics modelling of projectile penetration into concrete targets [J]. International
                    Journal of Impact Engineering, 2025, 195: 105110. DOI: 10.1016/j.ijimpeng.2024.105110.
               [15]   LITTLEWOOD D J. Simulation of dynamic fracture using peridynamics, finite element modeling, and contact [C]//ASME
                    International  Mechanical  Engineering  Congress  and  Exposition.  USA:  American  Society  of  Mechanical  Engineers,  2010:
                    209–217.
               [16]   BREITENFELD M S, GEUBELLE P H, WECKNER O, et al. Non-ordinary state-based peridynamic analysis of stationary
                    crack problems [J]. Computer Methods in Applied Mechanics and Engineering, 2014, 272: 233–250. DOI: 10.1016/j.cma.
                    2014.01.002.
               [17]   GU X, ZHANG Q, YU Y T. An effective way to control numerical instability of a nonordinary state-based peridynamic elastic
                    model  [J].  Mathematical  Problems  in  Engineering  Theory  Methods  and  Applications,  2017(1):  1750876.  DOI:  10.1155/
                    2017/1750876.
               [18]   YAGHOOBI A, CHORZEPA M G. Higher-order approximation to suppress the zero-energy mode in non-ordinary state-based
                    peridynamics [J]. Computers & Structures, 2017, 188: 63–79. DOI: 10.1016/j.compstruc.2017.03.019.
               [19]   CHEN  H  L.  Bond-associated  deformation  gradients  for  peridynamic  correspondence  model  [J].  Mechanics  Research
                    Communications, 2018, 90: 34–41. DOI: 10.1016/j.mechrescom.2018.04.004.
               [20]   GU X, ZHANG Q, MADENCI E, et al. Possible causes of numerical oscillations in non-ordinary state-based peridynamics
                    and a bond-associated higher-order stabilized model [J]. Computer Methods in Applied Mechanics and Engineering, 2019,
                    357: 112592. DOI: 10.1016/j.cma.2019.112592.
               [21]   ROSSI  P.  A  physical  phenomenon  which  can  explain  the  mechanical  behaviour  of  concrete  under  high  strain  rates  [J].
                    Materials and Structures, 1991, 24: 422–424. DOI: 10.1007/BF02472015.
               [22]   REINHARDT H W, WEERHEIJM J. Tensile fracture of concrete at high loading rates taking account of inertia and crack
                    velocity effects [J]. International Journal of Fracture, 1991, 51(1): 31–42. DOI: 10.1007/BF00020851.
               [23]   CURBACH  M,  EIBL  J.  Crack  velocity  in  concrete  [J].  Engineering  Fracture  Mechanics,  1990,  35(1):  321–326.  DOI:
                    10.1016/0013-7944(90)90210-8.
               [24]   LI Q M, MENG H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test [J].
                    International Journal of Solids and Structures, 2003, 40(2): 343–360. DOI: 10.1016/S0020-7683(02)00526-7.
               [25]   ZHANG M, WU H J, LI Q M, et al. Further investigation on the dynamic compressive strength enhancement of concrete-like
                    materials based on split Hopkinson pressure bar tests: part Ⅰ: experiments [J]. International Journal of Impact Engineering,
                    2009, 36(12): 1327–1334. DOI: 10.1016/j.ijimpeng.2009.04.009.
               [26]   LI  Q  M,  LU  Y  B,  MENG  H.  Further  investigation  on  the  dynamic  compressive  strength  enhancement  of  concrete-like
                    materials based  on  split  Hopkinson  pressure  bar  tests:  part   Ⅱ:  numerical  simulations  [J].  International  Journal  of  Impact
                    Engineering, 2009, 36(12): 1335–1345. DOI: 10.1016/j.ijimpeng.2009.04.010.
               [27]   LU Y B. , LI Q M. About the dynamic uniaxial tensile strength of concrete-like materials [J]. International Journal of Impact
                    Engineering, 2011, 38(4): 171–180. DOI: 10.1016/j.ijimpeng.2010.10.028.
               [28]   SCHMINDT M J. High pressure and high strain rate behavior of cementitious materials: experiments and elastic/viscoplastic
                    modeling [M]. Florida, USA: University of Florida, 2003.
               [29]   TANDON S, FABER K T, BAZANT Z P, et al.Cohesive crack modeling of influence of sudden changes in loading rate on
                    concrete fracture [J]. Engineering Fracture Mechanics, 1995, 52(6): 987–997. DOI: 10.1016/0013-7944(95)00080-F.
               [30]   HOLMQUIST T J, JOHNSON G R. A computational constitutive model for concrete subjected to larger strains, high strain
                    rates and high pressure [C]//The 14th International Symposium Ballistics. USA: American Defense Preparedness Association,
                    1995, 591–600.
               [31]   MALVAR  L  J,  CRAWFORD  J  E,  WESEVICH  J  W,  et  al.  A  plasticity  concrete  material  model  for  DYNA3D  [J].


                                                         124201-13
   160   161   162   163   164   165   166   167   168   169   170