Page 165 - 《爆炸与冲击》2025年第12期
P. 165
第 45 卷 刘振华,等: 基于非常规态近场动力学对混凝土动态拉伸断裂的数值模拟研究 第 12 期
penetration followed by charge explosion: experimental and numerical investigation [J]. International Journal of Impact
Engineering, 2023, 177: 104595. DOI: 10.1016/j.ijimpeng.2023.104595.
[12] SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces [J]. Journal of the Mechanics and
Physics of Solids, 2000, 48(1): 175–209. DOI: 10.1016/S0022-5096(99)00029-0.
[13] SILLING S A, EPTON M, WECKNER O, et al. Peridynamic states and constitutive modeling [J]. Journal of Elasticity, 2007,
88(2): 151–184. DOI: 10.1007/s10659-007-9125-1.
[14] LIU X, KONG X Z, FANG Q, et al. Peridynamics modelling of projectile penetration into concrete targets [J]. International
Journal of Impact Engineering, 2025, 195: 105110. DOI: 10.1016/j.ijimpeng.2024.105110.
[15] LITTLEWOOD D J. Simulation of dynamic fracture using peridynamics, finite element modeling, and contact [C]//ASME
International Mechanical Engineering Congress and Exposition. USA: American Society of Mechanical Engineers, 2010:
209–217.
[16] BREITENFELD M S, GEUBELLE P H, WECKNER O, et al. Non-ordinary state-based peridynamic analysis of stationary
crack problems [J]. Computer Methods in Applied Mechanics and Engineering, 2014, 272: 233–250. DOI: 10.1016/j.cma.
2014.01.002.
[17] GU X, ZHANG Q, YU Y T. An effective way to control numerical instability of a nonordinary state-based peridynamic elastic
model [J]. Mathematical Problems in Engineering Theory Methods and Applications, 2017(1): 1750876. DOI: 10.1155/
2017/1750876.
[18] YAGHOOBI A, CHORZEPA M G. Higher-order approximation to suppress the zero-energy mode in non-ordinary state-based
peridynamics [J]. Computers & Structures, 2017, 188: 63–79. DOI: 10.1016/j.compstruc.2017.03.019.
[19] CHEN H L. Bond-associated deformation gradients for peridynamic correspondence model [J]. Mechanics Research
Communications, 2018, 90: 34–41. DOI: 10.1016/j.mechrescom.2018.04.004.
[20] GU X, ZHANG Q, MADENCI E, et al. Possible causes of numerical oscillations in non-ordinary state-based peridynamics
and a bond-associated higher-order stabilized model [J]. Computer Methods in Applied Mechanics and Engineering, 2019,
357: 112592. DOI: 10.1016/j.cma.2019.112592.
[21] ROSSI P. A physical phenomenon which can explain the mechanical behaviour of concrete under high strain rates [J].
Materials and Structures, 1991, 24: 422–424. DOI: 10.1007/BF02472015.
[22] REINHARDT H W, WEERHEIJM J. Tensile fracture of concrete at high loading rates taking account of inertia and crack
velocity effects [J]. International Journal of Fracture, 1991, 51(1): 31–42. DOI: 10.1007/BF00020851.
[23] CURBACH M, EIBL J. Crack velocity in concrete [J]. Engineering Fracture Mechanics, 1990, 35(1): 321–326. DOI:
10.1016/0013-7944(90)90210-8.
[24] LI Q M, MENG H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test [J].
International Journal of Solids and Structures, 2003, 40(2): 343–360. DOI: 10.1016/S0020-7683(02)00526-7.
[25] ZHANG M, WU H J, LI Q M, et al. Further investigation on the dynamic compressive strength enhancement of concrete-like
materials based on split Hopkinson pressure bar tests: part Ⅰ: experiments [J]. International Journal of Impact Engineering,
2009, 36(12): 1327–1334. DOI: 10.1016/j.ijimpeng.2009.04.009.
[26] LI Q M, LU Y B, MENG H. Further investigation on the dynamic compressive strength enhancement of concrete-like
materials based on split Hopkinson pressure bar tests: part Ⅱ: numerical simulations [J]. International Journal of Impact
Engineering, 2009, 36(12): 1335–1345. DOI: 10.1016/j.ijimpeng.2009.04.010.
[27] LU Y B. , LI Q M. About the dynamic uniaxial tensile strength of concrete-like materials [J]. International Journal of Impact
Engineering, 2011, 38(4): 171–180. DOI: 10.1016/j.ijimpeng.2010.10.028.
[28] SCHMINDT M J. High pressure and high strain rate behavior of cementitious materials: experiments and elastic/viscoplastic
modeling [M]. Florida, USA: University of Florida, 2003.
[29] TANDON S, FABER K T, BAZANT Z P, et al.Cohesive crack modeling of influence of sudden changes in loading rate on
concrete fracture [J]. Engineering Fracture Mechanics, 1995, 52(6): 987–997. DOI: 10.1016/0013-7944(95)00080-F.
[30] HOLMQUIST T J, JOHNSON G R. A computational constitutive model for concrete subjected to larger strains, high strain
rates and high pressure [C]//The 14th International Symposium Ballistics. USA: American Defense Preparedness Association,
1995, 591–600.
[31] MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J].
124201-13

