Page 54 - 《爆炸与冲击》2025年第6期
P. 54

第 45 卷             刘红岩,等: 考虑裂隙粗糙度的岩体单轴压缩动态损伤模型                                  第 6 期

                    113103. DOI: 10.11883/bzycj-2023-0061.
                    WEN L, FENG W J, LI M Y, et al. Strain rate effect on crack propagation and fragmentation characteristics of red sandstone
                    containing pre-cracks [J]. Explosion and Shock Waves, 2023, 43(11): 113103. DOI: 10.11883/bzycj-2023-0061.
               [5]   YUAN  G  T,  ZHANG  M  W,  ZHANG  K,  et  al.  Dynamic  mechanical  response  characteristics  and  cracking  behavior  of
                    randomly distributed cracked sandstone [J]. Computational Particle Mechanics, 2024, 11(1): 119–139. DOI: 10.1007/s40571-
                    023-00612-y.
               [6]   JIA  Z  M,  ZHOU  X  P.  Modelling  fracture  of  rock  masses  around  tunnels  and  slopes  by  field-enriched  finite  element
                    method [J]. Computers and Geotechnics, 2023, 163: 105756. DOI: 10.1016/j.compgeo.2023.105756.
               [7]   KYOYA T, ICHIKAWA Y, KAWAMOTO T. Damage mechanics theory for discontinuous rock mass [C]//Proceedings of the
                    5th International Conference on Numerical Methods in Geomechanics. Nagoya, 1985: 469–480.
               [8]   KAWAMOTO T, ICHIKAWA Y, KYOYA T. Deformation and fracturing behaviour of discontinuous rock mass and damage
                    mechanics theory [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1988, 12(1): 1–30. DOI:
                    10.1002/nag.1610120102.
               [9]   SWOBODA G, SHEN X P, ROSAS L. Damage model for jointed rock mass and its application to tunnelling [J]. Computers
                    and Geotechnics, 1998, 22(3/4): 183–203. DOI: 10.1016/S0266-352X(98)00009-3.
               [10]   LI N, CHEN W, ZHANG P, et al. The mechanical properties and a fatigue-damage model for jointed rock masses subjected to
                    dynamic cyclical loading [J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(7): 1071–1079. DOI:
                    10.1016/S1365-1609(01)00058-2.
               [11]   LIU  H  Y,  ZHANG  L  M.  A  damage  constitutive  model  for  rock  mass  with  nonpersistently  closed  joints  under  uniaxial
                    compression [J]. Arabian Journal for Science and Engineering, 2015, 40(11): 3107–3117. DOI: 10.1007/s13369-015-1777-8.
               [12]   刘红岩, 李俊峰, 裴小龙. 单轴压缩下断续节理岩体动态损伤本构模型 [J]. 爆炸与冲击, 2018, 38(2): 316–323. DOI:
                    10.11883/bzycj-2016-0261.
                    LIU  H  Y,  LI  J  F,  PEI  X  L.  A  dynamic  damage  constitutive  model  for  rockmass  with  intermittent  joints  under  uniaxial
                    compression [J]. Explosion and Shock Waves, 2018, 38(2): 316–323. DOI: 10.11883/bzycj-2016-0261.
               [13]   杨圣奇, 陆家炜, 田文岭, 等. 不同节理粗糙度类岩石材料三轴压缩力学特性试验研究 [J]. 岩土力学, 2018, 39(S1): 21–32.
                    DOI: 10.16285/j.rsm.2017.2293.
                    YANG S Q, LU J W, TIAN W L, et al. Experimental study of mechanical behavior of rock specimens with different joint
                    roughness  coefficient  under  conventional  triaxial  compression  [J].  Rock  and  Soil  Mechanics,  2018,  39(S1):  21–32.  DOI:
                    10.16285/j.rsm.2017.2293.
               [14]   王本鑫, 金爱兵, 赵怡晴, 等. 基于  DIC  的含  3D  打印起伏节理试样破裂特性及损伤本构 [J]. 工程科学学报, 2022, 44(12):
                    2029–2039. DOI: 10.13374/j.issn2095-9389.2021.04.11.001.
                    WANG B X, JIN A B, ZHAO Y Q, et al. Fracture characteristics and the damage constitutive model of 3D printing undulating
                    joint  samples  based  on  DIC  [J].  Chinese  Journal  of  Engineering,  2022,  44(12):  2029–2039.  DOI:  10.13374/j.issn2095-
                    9389.2021.04.11.001.
               [15]   KIM D H, GRATCHEV I, BALASUBRAMANIAM A. Determination of joint roughness coefficient (JRC) for slope stability
                    analysis: a case study from the Gold Coast area, Australia [J]. Landslides, 2013, 10(5): 657–664. DOI: 10.1007/s10346-013-
                    0410-8.
               [16]   BARTON N. Review of a new shear-strength criterion for rock joints [J]. Engineering Geology, 1973, 7(4): 287–332. DOI:
                    10.1016/0013-7952(73)90013-6.
               [17]   谢和平, PARISEAU W G. 岩石节理粗糙系数    (JRC) 的分形估计 [J]. 中国科学  (B  辑), 1994, 24(5): 524–530.
                    XIE H P, PARISEAU W G. The fractal estimation of rock joint roughness coefficient [J]. Science in China (Series B), 1994,
                    24(5): 524–530.
               [18]   陈世江, 朱万成, 王创业, 等. 岩体结构面粗糙度系数定量表征研究进展 [J]. 力学学报, 2017, 49(2): 239–256. DOI:
                    10.6052/0459-1879-16-255.
                    CHEN S J, ZHU W C, WANG C Y, et al. Review of research progresses of the quantifying joint roughness coefficient [J].
                    Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 239–256. DOI: 10.6052/0459-1879-16-255.
               [19]   TAYLOR  L  M,  CHEN  E  P,  KUSZMAUL  J  S.  Microcrack-induced  damage  accumulation  in  brittle  rock  under  dynamic
                    loading [J]. Computer Methods in Applied Mechanics and Engineering, 1986, 55(3): 301–320. DOI: 10.1016/0045-7825(86)


                                                         061411-10
   49   50   51   52   53   54   55   56   57   58   59