Page 125 - 《爆炸与冲击》2025年第6期
P. 125

第 45 卷             刘康琦,等: 循环冲击荷载作用下单节理岩体的动态力学行为                                 第 6 期

               [28]   YAN Z L, DAI F, LIU Y, et al. Experimental investigations of the dynamic mechanical properties and fracturing behavior of
                    cracked rocks under dynamic loading [J]. Bulletin of Engineering Geology and the Environment, 2020, 79(10): 5535–5552.
                    DOI: 10.1007/s10064-020-01914-8.
               [29]   WANG X Y, LIU Z Y, GAO X C, et al. Dynamic characteristics and fracture process of marble under repeated impact loading
                    [J]. Engineering Fracture Mechanics, 2022, 276: 108926. DOI: 10.1016/j.engfracmech.2022.108926.
               [30]   王志亮, 汪大为, 汪书敏, 等. 循环冲击下大理岩的损伤力学行为及能量耗散特性 [J]. 爆炸与冲击, 2024, 44(4): 043104.
                    DOI: 10.11883/bzycj-2023-0243.
                    WANG Z L, WANG D W, WANG S M, et al. Dynamic behaviors and energy dissipation characteristics of marble under
                    cyclic impact loading [J]. Explosion and Shock Waves, 2024, 44(4): 043104. DOI: 10.11883/bzycj-2023-0243.
               [31]   HAN Z Y, LI D Y, ZHOU T, et al. Dynamic progressive fracture behavior of axially confined sandstone specimens containing
                    a single flaw [J]. Theoretical and Applied Fracture Mechanics, 2022, 122: 103597. DOI: 10.1016/j.tafmec.2022.103597.
               [32]   LUO  Y,  GONG  H  L,  HUANG  J  H,  et  al.  Dynamic  cumulative  damage  characteristics  of  deep-buried  granite  from
                    Shuangjiangkou hydropower station under true triaxial constraint [J]. International Journal of Impact Engineering, 2022, 165:
                    104215. DOI: 10.1016/j.ijimpeng.2022.104215.
               [33]   LI X B, LOK T S, ZHAO J. Dynamic characteristics of granite subjected to intermediate loading rate [J]. Rock Mechanics and
                    Rock Engineering, 2005, 38(1): 21–39. DOI: 10.1007/s00603-004-0030-7.
               [34]   XIA K, NASSERI M H B, MOHANTY B, et al. Effects of microstructures on dynamic compression of Barre granite [J].
                    International Journal of Rock Mechanics and Mining Sciences, 2008, 45(6): 879–887. DOI: 10.1016/j.ijrmms.2007.09.013.
               [35]   ZHOU T, DONG S L, ZHAO G F, et al. An experimental study of fatigue behavior of granite under low-cycle repetitive
                    compressive impacts [J]. Rock Mechanics and Rock Engineering, 2018, 51(10): 3157–3166. DOI: 10.1007/s00603-018-1515-0.
               [36]   LI X F, LI H B, ZHANG Q B, et al. Dynamic fragmentation of rock material: characteristic size, fragment distribution and
                    pulverization law [J]. Engineering Fracture Mechanics, 2018, 199: 739–759. DOI: 10.1016/j.engfracmech.2018.06.024.
               [37]   ABEN F M, DOAN M L, MITCHELL T M, et al. Dynamic fracturing by successive coseismic loadings leads to pulverization
                    in  active  fault  zones  [J].  Journal  of  Geophysical  Research:  Solid  Earth,  2016,  121(4):  2338–2360.  DOI:  10.1002/2015JB
                    012542.
               [38]   DOAN M L, D’HOUR V. Effect of initial damage on rock pulverization along faults [J]. Journal of Structural Geology, 2012,
                    45: 113–124. DOI: 10.1016/j.jsg.2012.05.006.
               [39]   ZHOU T, HAN Z Y, LI D Y, et al. Experimental study of the mechanical and fracture behavior of flawed sandstone subjected
                    to coupled static-repetitive impact loading [J]. Theoretical and Applied Fracture Mechanics, 2022, 117: 103161. DOI: 10.1016/
                    j.tafmec.2021.103161.
               [40]   LIU K Q, LIU H Y, ZHOU Y Z, et al. Experimental study on the dynamic mechanical and progressive fracture behavior of
                    multi-jointed rock mass under repetitive impact loading [J]. Theoretical and Applied Fracture Mechanics, 2024, 131: 104416.
                    DOI: 10.1016/j.tafmec.2024.104416.
               [41]   RAVICHANDRAN G, SUBHASH G. Critical appraisal of limiting strain rates for compression testing of ceramics in a split
                    Hopkinson  pressure  bar  [J].  Journal  of  the  American  Ceramic  Society,  1994,  77(1):  263–267.  DOI:  10.1111/j.1151-2916.
                    1994.tb06987.x.
               [42]   DAI  F,  XU  Y,  ZHAO  T,  et  al.  Loading-rate-dependent  progressive  fracturing  of  cracked  chevron-notched  Brazilian  disc
                    specimens in split Hopkinson pressure bar tests [J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 88:
                    49–60. DOI: 10.1016/j.ijrmms.2016.07.003.
               [43]   HOKKA M, BLACK J, TKALICH D, et al. Effects of strain rate and confining pressure on the compressive behavior of Kuru
                    granite [J]. International Journal of Impact Engineering, 2016, 91: 183–193. DOI: 10.1016/j.ijimpeng.2016.01.010.
               [44]   WANG P, YIN T B, LI X B, et al. Dynamic properties of thermally treated granite subjected to cyclic impact loading [J]. Rock
                    Mechanics and Rock Engineering, 2019, 52(4): 991–1010. DOI: 10.1007/s00603-018-1606-y.
               [45]   KIMBERLEY J, RAMESH K T, DAPHALAPURKAR N P. A scaling law for the dynamic strength of brittle solids [J]. Acta
                    Materialia, 2013, 61(9): 3509–3521. DOI: 10.1016/j.actamat.2013.02.045.
               [46]   郭奇峰, 武旭, 蔡美峰, 等. 预制裂隙花岗岩的裂纹起裂机理试验研究 [J]. 煤炭学报, 2019, 44(S2): 476–483. DOI:
                    10.13225/j.cnki.jccs.2019.1212.
                    GUO Q F, WU X, CAI M F, et al. Crack initiation mechanism of pre-existing cracked granite [J]. Journal of China Coal
                    Society, 2019, 44(S2): 476–483. DOI: 10.13225/j.cnki.jccs.2019.1212.
                                                                                          (责任编辑    张凌云)




                                                         061423-14
   120   121   122   123   124   125   126   127   128   129   130