Page 123 - 《爆炸与冲击》2025年第6期
P. 123
第 45 卷 刘康琦,等: 循环冲击荷载作用下单节理岩体的动态力学行为 第 6 期
4 结 论
利用分离式霍普金森压杆对单节理辉长岩试件进行了一系列的循环冲击试验,从试件可承受冲击
的次数、应力平衡、应力-应变关系、能量和损伤演化的角度研究了循环冲击对不同节理倾角试件的动
态力学性质的影响,获得的主要结论如下。
(1) 单节理岩体试件在循环冲击试验中可以很好地实现应力平衡,从而保证了试验结果的有效性。
节理倾角显著影响试件在循环冲击下的抗冲击能力,试件可承受的冲击次数随节理倾角的增大而增
加。试件在循环冲击过程中的峰值应力均明显低于入射应力,在冲击作用结束后均出现了明显的应变
回弹现象。试件的峰值应力总体上呈下降的趋势,但并不随着冲击次数的增加而单调下降。
(2) 当试件未发生整体断裂时,大部分能量通过试件传入透射杆,透射能占比较大,而试件发生完全
断裂后,能量无法再通过试件传递,透射能的占比最小。试件在循环冲击荷载作用下的损伤累积近似线性
增大,损伤的增幅随着节理倾角的增大而减小,累积损伤变量大于 0.21 时,在下一次冲击时试件会断裂。
(3) 在循环冲击荷载作用下,节理岩体内的压剪应力不足以产生剪切裂纹,裂纹由拉应力引起,并同
时出现微缺陷的压密和宏观缺陷尖端张拉裂纹的萌生,裂纹以有限的速度沿着最大压缩主应力的方向
扩展,最终贯穿试件导致试件发生劈裂破坏。而完整岩石内先出现微缺陷的压密,随后微裂纹以概率分
布的形式被激活,最终导致试件破坏。
参考文献:
[1] 孙广忠. 论“岩体结构控制论” [J]. 工程地质学报, 1993, 1(1): 14–18.
SUN G Z. On the theory of structure-controlled rock mass [J]. Journal of Engineering Geology, 1993, 1(1): 14–18.
[2] SINGH M, RAO K S, RAMAMURTHY T. Strength and deformational behaviour of a jointed rock mass [J]. Rock Mechanics
and Rock Engineering, 2002, 35(1): 45–64. DOI: 10.1007/s006030200008.
[3] SARFARAZI V, HAERI H. A review of experimental and numerical investigations about crack propagation [J]. Computers
and Concrete, 2016, 18(2): 235–266. DOI: 10.12989/cac.2016.18.2.235.
[4] ZHAO F, SHI Z M, YU S B, et al. A review of fracture mechanic behaviors of rocks containing various defects [J].
Underground Space, 2023, 12: 102–115. DOI: 10.1016/j.undsp.2023.02.006.
[5] NAOI M, NAKATANI M, IGARASHI T, et al. Unexpectedly frequent occurrence of very small repeating earthquakes
(−5.1≤M W ≤−3.6) in a south African gold mine: implications for monitoring intraplate faults [J]. Journal of Geophysical
Research: Solid Earth, 2015, 120(12): 8478–8493. DOI: 10.1002/2015JB012447.
[6] HUANG J, CHEN S H, LIU M L, et al. Physical model test and numerical simulation study of cumulative damage to deep
tunnel surrounding rock under cyclic blasting load [J]. International Journal of Damage Mechanics, 2023, 32(2): 161–184.
DOI: 10.1177/10567895221133133.
[7] QUINTEROS-CARTAYA C, SOLORIO-MAGAÑA G, NÚÑEZ-CORNÚ F J, et al. Microearthquakes in the Guadalajara
Metropolitan Zone, Mexico: evidence from buried active faults in Tesistán Valley, Zapopan [J]. Natural Hazards, 2023,
116(3): 2797–2818. DOI: 10.1007/s11069-022-05806-w.
[8] BAHAADDINI M, SHARROCK G, HEBBLEWHITE B K. Numerical direct shear tests to model the shear behaviour of rock
joints [J]. Computers and Geotechnics, 2013, 51: 101–115. DOI: 10.1016/j.compgeo.2013.02.003.
[9] ASADIZADEH M, HOSSAINI M F, MOOSAVI M, et al. Mechanical characterisation of jointed rock-like material with non-
persistent rough joints subjected to uniaxial compression [J]. Engineering Geology, 2019, 260: 105224. DOI: 10.1016/j.
enggeo.2019.105224.
[10] 刘红岩, 李俊峰, 裴小龙. 单轴压缩下断续节理岩体动态损伤本构模型 [J]. 爆炸与冲击, 2018, 38(2): 316–323. DOI:
10.11883/bzycj-2016-0261.
LIU H Y, LI J F, PEI X L. A dynamic damage constitutive model for rockmass with intermittent joints under uniaxial
compression [J]. Explosion and Shock Waves, 2018, 38(2): 316–323. DOI: 10.11883/bzycj-2016-0261.
[11] 邓正定, 王桢, 刘红岩. 基于复合损伤的节理岩体动态本构模型研究 [J]. 岩土力学, 2015, 36(5): 1368–1374. DOI:
10.16285/j.rsm.2015.05.019.
DENG Z D, WANG Z, LIU H Y. Dynamic constitutive model of jointed rock mass based on the theory of composite
damage [J]. Rock and Soil Mechanics, 2015, 36(5): 1368–1374. DOI: 10.16285/j.rsm.2015.05.019.
061423-12