Page 88 - 《爆炸与冲击》2025年第5期
P. 88

第 45 卷               左    庭,等: 冲击荷载下含铜矿岩能量耗散的数值模拟                               第 5 期

               达到  1.2 MPa 时,裂纹在约      50 μs 开始生成,拉伸裂纹数占比达到最大,平均值为                    62.30%,表明拉伸破坏
               在整个过程中始终占据主导作用。
                   (4) 含铜矿石试件破碎块度的分形维数随耗散能的增加呈线性增长,矿岩宏观破碎程度加剧,粒径
               不断减小,破碎块度的数目明显增多,均匀性越好,当耗散能从                           19.52 J 增至  105.72 J 时,含铜矿岩破碎块
               度的分形维数      D 提升了     26.43%。
                             b


               参考文献:
               [1]   李鹏远, 周平, 唐金荣, 等. 中国铜矿资源供应风险识别与评价: 基于长周期历史数据分析预测法 [J]. 中国矿业, 2019,
                    28(7): 44–51. DOI: 10.12075/j.issn.1004-4051.2019.07.027.
                    LI P Y, ZHOU P, TANG J R, et al. Identification and evaluation of copper supply risk for China: using method of long-term
                    historical data analysis [J]. China Mining Magazine, 2019, 28(7): 44–51. DOI: 10.12075/j.issn.1004-4051.2019.07.027.
               [2]   黎立云, 谢和平, 鞠杨, 等. 岩石可释放应变能及耗散能的实验研究 [J]. 工程力学, 2011, 28(3): 35–40. DOI: 10.6052/
                    j.issn.1000-4750.2009.08.0584.
                    LI  L  Y,  XIE  H  P,  JU  Y,  et  al.  Experimental  investigations  of  releasable  energy  and  dissipative  energy  within  rock  [J].
                    Engineering Mechanics, 2011, 28(3): 35–40. DOI: 10.6052/j.issn.1000-4750.2009.08.0584.
               [3]   武仁杰, 李海波. SHPB  冲击作用下层状千枚岩多尺度破坏机理研究 [J]. 爆炸与冲击, 2019, 39(8): 083106. DOI: 10.
                    11883/bzycj-2019-0187.
                    WU R J, LI H B. Multi-scale failure mechanism analysis of layered phyllite subject to impact loading [J]. Explosion and
                    Shock Waves, 2019, 39(8): 083106. DOI: 10.11883/bzycj-2019-0187.
               [4]   CHO S H, OGATA Y, KANEKO K. Strain-rate dependency of the dynamic tensile strength of rock [J]. International Journal
                    of Rock Mechanics and Mining Sciences, 2003, 40(5): 763–777. DOI: 10.1016/S1365-1609(03)00072-8.
               [5]   江益辉. 冲击荷载作用下岩石峰后损伤破坏特性研究 [D]. 长沙: 中南大学, 2014: 48–53.
                    JIANG Y H. Study on post failure behaviors of rock under impact loading [D]. Changsha: Central South University, 2014:
                    48–53.
               [6]   尤业超, 李二兵, 谭跃虎, 等. 基于能量耗散原理的盐岩动力特性及破坏特征分析 [J]. 岩石力学与工程学报, 2017, 36(4):
                    843–851. DOI: 10.13722/j.cnki.jrme.2016.0503.
                    YOU Y C, LI E B, TAN Y H, et al. Analysis on dynamic properties and failure characteristics of salt rock based on energy
                    dissipation principle [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(4): 843–851. DOI: 10.13722/j.cnki.
                    jrme.2016.0503.
               [7]   PING Q, WU M J, YUAN P, et al. Dynamic splitting experimental study on sandstone at actual high temperatures under
                    different loading rates [J]. Shock and Vibration, 2020, 2020: 8867102. DOI: 10.1155/2020/8867102.
               [8]   LI E B, GAO L, JIANG X Q, et al. Analysis of dynamic compression property and energy dissipation of salt rock under three-
                    dimensional pressure [J]. Environmental Earth Sciences, 2019, 78(14): 388. DOI: 10.1007/s12665-019-8389-7.
               [9]   YU L Y, FU A Q, YIN Q, et al. Dynamic fracturing properties of marble after being subjected to multiple impact loadings [J].
                    Engineering Fracture Mechanics, 2020, 230: 106988. DOI: 10.1016/j.engfracmech.2020.106988.
               [10]   WU Z J, CUI W J, FAN L F, et al. Mesomechanism of the dynamic tensile fracture and fragmentation behaviour of concrete
                    with heterogeneous mesostructure [J]. Construction and Building Materials, 2019, 217: 573–591. DOI: 10.1016/j.conbuildmat.
                    2019.05.094.
               [11]   FUKUDA D, MOHAMMADNEJAD M, LIU H Y, et al. Development of a 3D hybrid finite-discrete element simulator based
                    on  GPGPU-parallelized  computation  for  modelling  rock  fracturing  under  quasi-static  and  dynamic  loading  conditions  [J].
                    Rock Mechanics and Rock Engineering, 2020, 53(3): 1079–1112. DOI: 10.1007/s00603-019-01960-z.
               [12]   WU D, LI H B, FUKUDA D, et al. Development of a finite-discrete element method with finite-strain elasto-plasticity and
                    cohesive zone models for simulating the dynamic fracture of rocks [J]. Computers and Geotechnics, 2023, 156: 105271. DOI:
                    10.1016/j.compgeo.2023.105271.
               [13]   柴少波, 王昊, 井彦林, 等. 充填节理岩石累积损伤动力压缩特性试验研究 [J]. 岩石力学与工程学报, 2020, 39(10):


                                                         053202-12
   83   84   85   86   87   88   89   90   91   92   93