Page 88 - 《爆炸与冲击》2025年第5期
P. 88
第 45 卷 左 庭,等: 冲击荷载下含铜矿岩能量耗散的数值模拟 第 5 期
达到 1.2 MPa 时,裂纹在约 50 μs 开始生成,拉伸裂纹数占比达到最大,平均值为 62.30%,表明拉伸破坏
在整个过程中始终占据主导作用。
(4) 含铜矿石试件破碎块度的分形维数随耗散能的增加呈线性增长,矿岩宏观破碎程度加剧,粒径
不断减小,破碎块度的数目明显增多,均匀性越好,当耗散能从 19.52 J 增至 105.72 J 时,含铜矿岩破碎块
度的分形维数 D 提升了 26.43%。
b
参考文献:
[1] 李鹏远, 周平, 唐金荣, 等. 中国铜矿资源供应风险识别与评价: 基于长周期历史数据分析预测法 [J]. 中国矿业, 2019,
28(7): 44–51. DOI: 10.12075/j.issn.1004-4051.2019.07.027.
LI P Y, ZHOU P, TANG J R, et al. Identification and evaluation of copper supply risk for China: using method of long-term
historical data analysis [J]. China Mining Magazine, 2019, 28(7): 44–51. DOI: 10.12075/j.issn.1004-4051.2019.07.027.
[2] 黎立云, 谢和平, 鞠杨, 等. 岩石可释放应变能及耗散能的实验研究 [J]. 工程力学, 2011, 28(3): 35–40. DOI: 10.6052/
j.issn.1000-4750.2009.08.0584.
LI L Y, XIE H P, JU Y, et al. Experimental investigations of releasable energy and dissipative energy within rock [J].
Engineering Mechanics, 2011, 28(3): 35–40. DOI: 10.6052/j.issn.1000-4750.2009.08.0584.
[3] 武仁杰, 李海波. SHPB 冲击作用下层状千枚岩多尺度破坏机理研究 [J]. 爆炸与冲击, 2019, 39(8): 083106. DOI: 10.
11883/bzycj-2019-0187.
WU R J, LI H B. Multi-scale failure mechanism analysis of layered phyllite subject to impact loading [J]. Explosion and
Shock Waves, 2019, 39(8): 083106. DOI: 10.11883/bzycj-2019-0187.
[4] CHO S H, OGATA Y, KANEKO K. Strain-rate dependency of the dynamic tensile strength of rock [J]. International Journal
of Rock Mechanics and Mining Sciences, 2003, 40(5): 763–777. DOI: 10.1016/S1365-1609(03)00072-8.
[5] 江益辉. 冲击荷载作用下岩石峰后损伤破坏特性研究 [D]. 长沙: 中南大学, 2014: 48–53.
JIANG Y H. Study on post failure behaviors of rock under impact loading [D]. Changsha: Central South University, 2014:
48–53.
[6] 尤业超, 李二兵, 谭跃虎, 等. 基于能量耗散原理的盐岩动力特性及破坏特征分析 [J]. 岩石力学与工程学报, 2017, 36(4):
843–851. DOI: 10.13722/j.cnki.jrme.2016.0503.
YOU Y C, LI E B, TAN Y H, et al. Analysis on dynamic properties and failure characteristics of salt rock based on energy
dissipation principle [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(4): 843–851. DOI: 10.13722/j.cnki.
jrme.2016.0503.
[7] PING Q, WU M J, YUAN P, et al. Dynamic splitting experimental study on sandstone at actual high temperatures under
different loading rates [J]. Shock and Vibration, 2020, 2020: 8867102. DOI: 10.1155/2020/8867102.
[8] LI E B, GAO L, JIANG X Q, et al. Analysis of dynamic compression property and energy dissipation of salt rock under three-
dimensional pressure [J]. Environmental Earth Sciences, 2019, 78(14): 388. DOI: 10.1007/s12665-019-8389-7.
[9] YU L Y, FU A Q, YIN Q, et al. Dynamic fracturing properties of marble after being subjected to multiple impact loadings [J].
Engineering Fracture Mechanics, 2020, 230: 106988. DOI: 10.1016/j.engfracmech.2020.106988.
[10] WU Z J, CUI W J, FAN L F, et al. Mesomechanism of the dynamic tensile fracture and fragmentation behaviour of concrete
with heterogeneous mesostructure [J]. Construction and Building Materials, 2019, 217: 573–591. DOI: 10.1016/j.conbuildmat.
2019.05.094.
[11] FUKUDA D, MOHAMMADNEJAD M, LIU H Y, et al. Development of a 3D hybrid finite-discrete element simulator based
on GPGPU-parallelized computation for modelling rock fracturing under quasi-static and dynamic loading conditions [J].
Rock Mechanics and Rock Engineering, 2020, 53(3): 1079–1112. DOI: 10.1007/s00603-019-01960-z.
[12] WU D, LI H B, FUKUDA D, et al. Development of a finite-discrete element method with finite-strain elasto-plasticity and
cohesive zone models for simulating the dynamic fracture of rocks [J]. Computers and Geotechnics, 2023, 156: 105271. DOI:
10.1016/j.compgeo.2023.105271.
[13] 柴少波, 王昊, 井彦林, 等. 充填节理岩石累积损伤动力压缩特性试验研究 [J]. 岩石力学与工程学报, 2020, 39(10):
053202-12